
JOURNAL OF SPATIAL INFORMATION SCIENCE

Number 17 (2018), pp. 31–62 doi:10.5311/JOSIS.2018.17.417

RESEARCH ARTICLE

Georeferencing places from
collective human descriptions using

place graphs
Hao Chen, Maria Vasardani, and Stephan Winter
Dept. of Infrastructure Engineering, The University of Melbourne, Australia

Received: February 2, 2018; returned: May 21, 2018; revised: September 4, 2018; accepted: November 19, 2018.

Abstract: Place descriptions in everyday communication or in online text provide a rich
source of spatial knowledge about places. Such descriptions typically consist of references
to places and spatial relationships between them. An important step to utilize such knowl-
edge in information systems is georeferencing the referred places. Beside place name dis-
ambiguation, another challenge is that a significant proportion of place references in such
descriptions are not official place names indexed by gazetteers, thus cannot be resolved
easily. This paper presents a novel approach for georeferencing places from collective de-
scriptions using place graphs, regardless of whether they are referred to by gazetteered
names or not. The approach leverages spatial relation models for approximate locating
and matching. Different models are proposed and evaluated using several metrics.

Keywords: place description, place graph, georeferencing, qualitative spatial relation, spa-
tial language

1 Introduction

Place descriptions are a way of encoding and transmitting spatial knowledge about places
between individuals [51, 52]. They are conveyed in either verbal or written form in ev-
eryday communication. The web provides a plethora of place descriptions such as news
articles, social media texts, trip guides, and tourism articles [24]. Place descriptions typi-
cally provide a qualitative reference system for describing geographic locations, and con-
sist essentially of references to places and their qualitative spatial relationships, e.g., “The
courtyard is on the campus, beside the clock tower,” describing the location of the courtyard
in relation to two other places.
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In order to enable computers to digest the place information communicated in such
descriptions, the references to places have to be located in space through georeferencing.
The place information can then be used to enrich geographic information systems and to
facilitate a wide range of applications such as geographic information retrieval [22, 40, 47],
smoothing human-computer interaction [9, 41, 55] by providing an interface with the ca-
pacity of locating place references given in vernacular contexts, as well as for general place
search and analysis purposes.

In this research, we regard place descriptions as textual documents. Georeferencing
place from text is not a new problem. With the increasing volume of unstructured text
documents published online, and the growing need for place related information, extensive
studies have focused on identifying and locating place names from text, e.g., [29,31], thanks
to the rapid development of text mining and natural language processing techniques.

However, methods proposed in these previous studies are typically based on identify-
ing and disambiguating gazetteered, i.e., officially indexed, place names, and ignore refer-
ences to places that are not. Everyday place descriptions, on the other hand, often include
vernacular and thus potentially non-gazetteered place references, such as synonyms or
place types (e.g., “the large square”), references to places that are from too fine-grained en-
vironments to be captured by gazetteers (e.g., “the dean’s office”), and references to vague
places or vernaculars that exist only in limited contexts (e.g., “the BBQ area near the tree
in front of our department”). In communications, such places are typically located by pro-
viding spatial relations to some landmarks. In the previous example, the “campus” is a
functional reference instead of an official name, and “courtyard” and the “clock tower” are
referring to non-gazetteered places, but all are used as landmarks.

Non-gazetteered places, including fine-grained places, often have higher ambiguities
to resolve than coarse-grained ones [3]. The current approaches, mostly designed for
larger geographic features such as populated places (e.g., cities or countries) or natural ge-
ographic features (e.g., rivers or mountains), use heuristics for ambiguity resolution based
on the sizes of the features (e.g., population) or their hierarchical containment relationships.
Such approaches are not applicable for features in everyday communication, which are sig-
nificantly more numerous and more similar to each other. Thus, this research is facing a
more complex problem than the one addressed previously.

In order to address both the reference and the ambiguity problem, this research will
take advantage of place graphs, representing the extracted spatial knowledge from place
descriptions. In these place graphs references to places are embedded in a neighbourhood,
or spatial context. The hypothesis of this research is that integrating place graphs into the
georeferencing process allows to address these two problems, regardless of whether they
are referred by gazetteered names or not. The approach below first identifies and disam-
biguates anchor place names that are gazetteered and easier to resolve. Next, it derives
approximate location representations for the remaining place references based on their
spatial relationships to the anchors. The derived approximate locations are used for best-
matching to gazetteer entries, as well as for locating these places on a map even if they are
not gazetteered. Thus the contributions of this paper are:

1. an approach that leverages spatial relations to georeference places from place descrip-
tions, even if they are referred by references that are not officially indexed names.

2. the use of both formal models for spatial relations, as well as contextualized
probabilistic-based ones that are contextualized and were trained in a reverse-
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engineering manner. We also propose a method to integrate different search spaces
to compute the approximate locations of places.

3. a matching procedure to link unrecognizable place references to gazetteer entries
based on string and semantic similarities and relation satisfaction.

4. a test of our approach on several datasets collected from different sources and with
different sizes, granularity, and place density, evaluating the approach using various
metrics.

The remainder of the paper is structured as follows. In Section 2 a review of related
work is given. Section 3 clarifies the input and the georeferencing approach. Section 4
shows implementation and experiment results on test datasets. Section 5 presents a discus-
sion on the case study and the obtained results. Section 6 concludes this paper.

2 Related work

People talk about space by referring to places [56]. Place-based research is an increasingly
popular field in GIScience as an alternative and complement to research with surveying
based data, and its importance has been widely acknowledged (e.g., see [16,17,55]). In this
section, related works about georeferencing place from text, modelling qualitative spatial
relations, and place graphs will be introduced.

2.1 Georeferencing place from text

In order to locate place names on a map with precise coordinates, gazetteers are often used.
A gazetteer typically contains three core components: place name, feature type, and foot-
print [20] and is often regarded as a geospatial dictionary of geographic names. A place
name is what people usually use when they search for this place, and is typically an official
name gazetteered by an authority. Some gazetteers may also store alternative names. A
place type is a category from a feature type thesaurus for classifying places according to
their semantics. A footprint represents the location of a place, typically by a single coordi-
nate tuple for the center of the place, and sometimes by a polygon or a polyline instead.

The task for resolving the locations of places referred to in text is often called toponym
resolution [29], and it is a core task for building geographic information retrieval and doc-
ument geotagging systems [32, 40]. It comprises two tasks, namely place name recog-
nition, and disambiguation (disambiguation because place names are rarely unique; e.g.,
geonames.org lists 14 populated places “Melbourne” worldwide). Toponym recognition
is typically done by gazetteer matching, thus non-gazetteered place references are ignored.
In this research, place references were instead extracted using a parser that is able to cap-
ture references identified by spatial relationships [23, 34], regardless of whether they are
gazetteered or not. Many of these place references are even not proper names, but de-
scriptions. For the disambiguation task, extensive methods have been proposed that can
be classified as map-, knowledge-, or machine learning-based, and are often used in con-
junction with various heuristics. The selection of an approach is highly task and source
dependent [3]. Most of these existing approaches cannot be applied directly for the task of
this research, as they are designed for coarse-granularity places such as natural geographic
features and populated places. Fine-grained places may not have sufficient differentiators
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for such heuristics, e.g., popularity, prominence, and hierarchical containment relation-
ships [1, 4], and are often more ambiguous to resolve.

Some other studies attempt to overcome the limitations. Palacio et al. developed an
approach for disambiguating fine-grained toponyms based on Euclidean distance and to-
pographic similarity to anchor toponyms from the discourse [39]. However, the approach
still requires the toponyms to be disambiguated being captured by some databases such as
a gazetteer, in order to retrieve ambiguous candidate entries with type and location infor-
mation. Moncla et al. discussed the possibility of leveraging natural language spatial rela-
tionships to approximately locating non-gazetteered toponyms; however, their actual im-
plementation only relies on the convex hull and circumscribed circle of anchors [38]. Spitz
et al. leverage the network for toponym disambiguation based on computing a ranking of
candidates by their co-occurrence with other toponyms mentioned in the documents [49].
However, the network must be georeferenced beforehand, which means it cannot be used
to resolve new toponyms that did not appear in the network. Finally, some studies focus
on developing gazetteer independent approaches. For example, language models have
been used for georeferencing toponyms and documents [46, 54]. These methods typically
discretize the earth into cells, and train language models to associate documents with these
cells. Then, similarity scores are computed to decide which cells are best corresponding
to a given test documents. DeLozier and Baldridge also developed a gazetteer indepen-
dent approach that calculates the likelihood of seeing a word at a certain location, and find
points of strongest overlap for a toponym and context words [11]. However, the mean and
median distance errors (as well as distance uncertainties caused by the size of the cells) of
these gazetteer independent methods are generally at the scale from hundreds to thousands
of kilometers, which are much less useful in locating fine-grained places.

2.2 Modeling qualitative spatial relations

People use qualitative spatial relations often when describing places from memory, based
on their cognitive image of the environment. Qualitative spatial relations have been exten-
sively studied in Artificial Intelligence (e.g., see [33]), where they are formalized in logical
or algebraic calculi. In English, such qualitative spatial relationships are often expressed
by prepositions thus can be identified and extracted from texts.

Some studies derive uncertainty fields for spatial relations (but not always qualitative)
in locative expressions referring to some known locations (e.g., “10km east of Berkeley”)
based on probabilistic models [35]. However, their parameters require manual configura-
tion by the user when the models are being used. Fu et al. assign different search radii
for relations such as near or north based on the size of the places for spatial querying, the
distance parameters are again empirically adjusted [14]. Other studies attempt to quantify
qualitative spatial relations using data-driven methods. Delboni et al. focus on determin-
ing semantic equivalence of distance relations for query expansion purposes [10]. Hall et
al. quantify spatial relations in terms of distance and orientation [19]. Skoumas et al. derive
probabilistic models for spatial relations and choose only major metropolises as their case
study [48]. Derungs and Purves use web n-grams to model vague spatial relation concepts,
and also have a strong focus on prominent places [12]. The way of deriving some of the spa-
tial relation models in this research is essentially not so different compared to [48] and [12];
however we also aim at generalizing the models to make them scalable to different places
for georeferencing purposes as well as to make them contextualized.
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Other studies suggest bringing in context for interpreting qualitative spatial relations.
However, most of them only remain at conceptual level, and the knowledge required in
these models may not be extracted from text using existing techniques. For example, Cai
proposed a framework to contextually model geospatial data considering tasks and trans-
portation tools [6]. Wallgrün et al. propose identifying key context features affecting hu-
man usage of spatial relation expressions, in order to produce contextualized models for
answering spatial queries [53]. Despite the fact that no implementation is yet provided, the
goal is similar to the current research. Yao and Thill studied context explicitly by investigat-
ing how contextual features could affect the interpretation of proximity measures such as
near and not so far [58]. However, most of such contextual features, e.g., familiarity with the
area, financial and time budget, network connectivity, and personal characteristics, may
not be extracted from text either. In this research we focus on contextual features that are
derivable from place descriptions.

Despite the extensive studies on modeling qualitative spatial relations and the expected
efficacy of these models in georeferencing place from text, spatial relation models are
hardly leveraged for this purpose. In a recent review of current approaches for geocod-
ing textual documents, spatial relationships other than hierarchical containment are not
discussed [37]. In the approach below, we propose several models for various qualitative
spatial relation families, and test their performance on georeferencing places.

2.3 Place graphs

The input of this research are preprocessed place graphs instead of raw place descriptions.
Vasardani et al. regard place descriptions as place references and spatial relationships em-
bedded in locative expressions, which can be extracted using a parser and modeled by
triplets [51]. For example, the description “The courtyard is on the campus, beside the clock-
tower" can be modelled in the form of triplets of a locatum L, the reference to a place that
is to be located, a relatum R, the reference to a place that is already located, and a spa-
tial relationship r between the two: <L: courtyard, r: on, R: campus> and <L: courtyard,
r: beside, R: clocktower>. A place graph G = (V,E) can then be constructed from such
triplets [25, 51], with the directions of the edges starting from the locata and ending with
the relata. A parser being able to extract triplets from place descriptions have been devel-
oped [23,34]. Each triplet is stored as two nodes, one each for locatum and relatum, and an
edge in between for the spatial relationship. The two example triplets can be used to create
a simple place graph, as shown in Figure 1.

Figure 1: A simple place graph representing the spatial references “the courtyard is on the
campus" and “the courtyard is beside the clocktower."

When a place graph is constructed from collective place descriptions, the challenge is
to identify nodes referring to identical places. For example, if the two triplets are from two
different description discourses, the graph in Figure 1 cannot be created unless the two
courtyard references are detected to be referring to the same place. Kim et al. developed
a comprehensive approach to merge different place graphs by identifying place identity
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with several measurements [27]. Sufficiently similar places are stored as a single node, i.e.,
each node has a unique identifier and potentially multiple place references. Note that this
task is different from toponym disambiguation, as node merging does not require the place
references to be gazetteered, and the process will not link places to locations either.

Compared to the object and field based models for places, a place graph additionally
captures the network dimension [28] of places by their co-occurrence and spatial relation-
ships in descriptions. Place graphs have been used already for several tasks including
creating plausible sketch maps [25] and identifying landmarks [26].

3 Methodology

This section first clarifies the input of the georeferencing approach below, the three core
subtasks, and the workflow of this research. It will then guide through each subtask.

3.1 Overview

Each node in a place graph has a unique identifier and at least one, but potentially multiple
place references. Between places (as conceptualized in the real world) and place references
are n:m relationships, i.e., a place may be referred to by one or more different place refer-
ences, while the same place reference may be used to describe different places in different
contexts. For example, two references “Flinders Street Railway Station” (gazetteered ref-
erence) and “the train station” (non-gazetteered reference) come from conversational con-
texts where they refer to the same, gazetteered place (Flinders Street Railway Station). In a
different context, the reference “the train station” may refer to another train station.

Figure 2 shows a sample place graph, which consists of six places represented by nodes
(labeled a, b, c, d, e, f ) as well as seven spatial relationships represented by labeled edges.
A list of place references from the original place descriptions for each node is shown in the
solid line rectangles. Each dashed line rectangle shows the gazetteered name(s) for these
places (“-” for non-gazetteered places). The ground truth names are only shown here for
demonstration purposes, and are not available from the input place graph for the below
georeferencing process.

Figure 2: A sample place graph with six nodes and seven edges, each node is stored with
one or more place references merged from collective place descriptions.
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Figure 3: The workflow of this research, with the first three phases corresponding to the
three major subtasks of the georeferencing approach.

Note the difference between a non-gazetteered reference and a non-gazetteered place: a non-
gazetteered reference may either be a synonym referring to a gazetteered place, or a refer-
ence referring to a non-gazetteered place, while a non-gazetteered place does not have any
corresponding gazetteer entries. Thus, three situations can be distinguished for nodes in a
place graph (taking the sample graph as example, judged by the ground truth information):

1. A gazetteered place with at least one gazetteered reference and possibly other non-
gazetteered references (synonyms) (nodes a, c, d);

2. A gazetteered place with no gazetteered references (nodes b, e); and
3. A non-gazetteered place (node f ).

Such a place graph is the input of the georeferencing approach below. Additionally, a
separate index file is kept, storing the information of which references are from the same
original descriptions (by a description identifier). Thus, it is possible to trace back reference
co-occurrence by discourse. The task of this research is to georeference every node from an
input place graph. The solution provided in this research can be divided into three main
phases, as shown in Figure 3.

The first phase attempts to identify and disambiguate some anchor places in an input
place graph, i.e., nodes from Situation 1 (gazetteered reference). This is done by searching
all place references in a gazetteer and disambiguation through a density based clustering
method. In the second phase, the approximate location regions of the remaining places
(Situations 2–3) are derived based on their spatial relationships to the resolved anchors.
Finally, the derived regions will be used for matching with gazetteered entries within them.

3.2 Resolving anchor places

In the first phase, all place references in an input place graph are looked up using a
gazetteer. If a place has at least one associated place reference that can be found in the
gazetteer (i.e., Situation 1), it is regarded as an anchor place.

The next step is disambiguation, i.e., assigning each anchor place with one entry from its
ambiguous candidates. We choose to use a map-based approach as it does not require ad-
ditional knowledge of places. Place descriptions often contain place names of fine-grained
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features, while knowledge-based disambiguation approaches developed in the literature
typically focus on larger geographic features. Such approaches quickly fail when dealing
with the fine-grained places. Even disambiguation approaches based on machine-learning
techniques are difficult to be applied for fine-grained places due to the lack of good quality
training data.

Map-based disambiguation typically relies on clustering, with the locations of all am-
biguous entries for all places as the input point cloud. Among the algorithms used in the
literature (e.g., [5, 18, 38]), DBSCAN seems most suitable for the task of this research when
compared to other simplified heuristics. However, DBSCAN has a major disadvantage as
it requires manual input parameters, particularly Eps—the distance threshold to put points
into one cluster. This parameter was empirically adjusted in [38], which requires a-priori
knowledge of the context of the collected data. While in many large-scale contexts this is
given, in our context of everyday communication—collecting descriptions of potentially
various conversational contexts—no a-priori value can be assumed.

Therefore, for this step we use an algorithm presented in [7]. The algorithm does not
require manual input parameter values, and it is able to identify clusters with significantly
large point densities that are likely to be corresponding to spatial contexts. The function
shown in Equation 1 is firstly defined, which computes point density according to different
distance thresholds d. ∆d is for discretizing the function and can easily be set to a small
distance such as 100m. Then, the value of d where the point density first falls at two stan-
dard deviations plus the mean density after the global maximum value is selected as the
cluster distance for deriving clusters.

K(d) =
1

πd2 − π(d−∆d)2
× 1

n

n∑
i=1

count(p ∈ region(pi, (d−∆d, d])) (1)

Figure 4 illustrates the disambiguated anchor places from the sample graph through
clustering. The performance of the algorithm along with its robustness and sensitivity
has been evaluated [7]. The result confirms its superiority over DBSCAN as well as other
competitive clustering algorithms for the task of disambiguating place names from place
descriptions, in terms of disambiguation precision and distance error. The algorithm is
robust with input from various conversational contexts, this is shown by having relatively
low variance in disambiguation precision and distance error. It is also able to derive clusters
that are well-matched to the actual spatial contexts for these inputs.

We also introduce an additional process for further disambiguation, as it is possible that
a cluster may contain more than one entry for an anchor place. In this case, these places are
temporarily removed from the anchor place list, and will be georeferenced together with
the remaining places in the next phase, where spatial relationships will be used for further
disambiguation.

3.3 Deriving approximate location region representations

This section first introduces search spaces for spatial relations, either as formally defined
ones or as contextualized probabilistic-based ones trained from data. Approximate location
regions will then be introduced for integrating different search spaces in order to approxi-
mately locate the remaining places from the previous phase.
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Figure 4: Disambiguated anchor places a, c, d from the sample graph. The dashed circle in-
dicates approximately the spatial context of the sample graph, where the identified cluster
(the three entries shown on the map) are within (source: Google Map, 2015).

3.3.1 Formal search spaces

The semantics of qualitative spatial relationships from four relationship families are con-
sidered, as shown in Table 1. In order to be able to use these families, a mapping of spatial
prepositions (in the place graph) to the formal relationships has to be applied. We used
a classification schema in a look up table, as also implemented in the literature [25]. For
example, the natural language preposition close will be mapped to the qualitative distance
relation near, and W and western will be mapped to the cardinal direction relation west.

Table 1: Spatial relationships considered for search space modeling in this research

Spatial relationship family Spatial relationships

Cardinal direction north, south, east, west, northeast, southeast, northwest, southwest
Qualitative distance near
Relative direction in front of, behind, left of, right of
Topological inside, covered by, overlap, meet, disjoint, cover, contain, equal

A search space is defined for each relation from Table 1 to represent the constrained
location of a locatum that satisfies the spatial relation to an already georeferenced anchor
place (relatum). The search spaces below are defined for anchor place geometries of points,
polylines, or polygons, although in most gazetteers places are represented by points.
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Cardinal direction relations. The search spaces for cardinal direction relations are de-
fined based on Frank’s half-plane models for point type relatum [13], as shown in Fig-
ure 5 (a, b, c). The model can be extended to support polygon-based relata (Figure 5
(d)).However, in this research we chose to use the centroid of any polygon to derive the
half-planes. The reason is that a cardinal direction preposition might express an internal
relation [36], e.g., “in the north (in the northern part) of the city,” which is misinterpreted
by a polygon model.

Figure 5: Search spaces for cardinal direction relations based on the centroid of the relatum
(a, b, c), and an alternative model for non-point relata (d) that is not applied in this research.

Qualitative distance relations. The search spaces for qualitative distance relations are
defined by buffer regions as shown in Figure 6 (a, b, c) for different relatum geometry
types. Similar to the ones proposed in [35] Figure 6 (d). Buffer regions are a generally
accepted model for quantifying qualitative distances in applications such as in local search
applications or geographic information retrieval engines. The buffer distances, which are
highly context dependent, are defined here empirically, and then adapted to the semantic
context considering the size of the relata as well as to the size of the spatial context (which
will be introduced in Section 3.3.3), as shown in Equation 2. d stands for the buffer distance,
α is a constant, and β, γ are two coefficients that make d positively correlated with the area
of the relatum, as well as the area of the spatial context.

Figure 6: Search spaces for the qualitative distance relations in this research (a, b, c), and a
comparison to the model by Liu et al. (d).

d = α+ β ∗ getArea(relatum) + γ ∗ getArea(spatialContext) (2)

Relative direction relations. Search spaces for relative direction relations are defined
based on orientation reference frames used by people, and can be either deictic, intrinsic or
extrinsic [43]. Assuming that the reference frame used is known (and stored in the place
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graph), the search spaces could be defined as shown in Figure 7. The arrow in the figure
shows the direction of “in front of” in a known reference frame.

However, current natural language parsers are unable to infer the reference frames of
prepositions automatically from place descriptions. If spatial reference frame knowledge
is unavailable, the search spaces is set to be the same as near, as a fallback approach.

Figure 7: Search spaces for relative directions given a reference frame.

Topological relations. If the relatum is polygon-based, the search spaces for different
topological relations are defined as shown in Figure 8, otherwise no search spaces will
be enforced. These search spaces are used as initial filters. In the later best-matching stage,
topological relations will further validated through geometry computation for excluding
unsatisfactory gazetteer entries.

Figure 8: Search spaces for covered by, equal, inside (a), disjoint, meet (b), and the other three
topological relations overlap, cover, contain (c).

3.3.2 Contextualized probabilistic search space models

As refinements to the formal search space models, we propose contextualized probabilistic
search space models. Search spaces in this section are derived from training data and are
contextualized by four factors. The values of the factors are only dependent on the input
information introduced previously, and thus are automatically obtainable.

Granularity of the relatum. The semantics of a triplet’s relatum can affect the interpre-
tation of the triplet’s spatial relation. For instance, “near a restaurant”, “near an airport”,
and “near Melbourne” should be interpreted differently for defining search spaces. This
factor has also been used in the formal models for qualitative distance relations introduced
above. Here we group the semantic types of relata into five categories based on spatial
granularity, inspired by the classification in Richter et al. [44]: finer than building-, building-,
street-, district-, or city-level and beyond city. The underlying assumption is that places from
the same spatial granularity level generally have similar search spaces for spatial relations.
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Granularity of the locatum. Similarly, the semantics of the locatum can also affect search
spaces. For example, “the building is near the CBD” and “the suburb is near the CBD”
differ in their search spaces for the locatum. The theory of contrast sets by Winter and
Freksa [57] offers an explanation for this. The contrast sets of the two locata are other
buildings and other suburbs in the current conversational contexts, respectively. Therefore,
the search spaces for suburbs will be larger than for buildings. The same five categories of
place granularity are used for this factor.

Prominence of the relatum. Landmarks are cognitively salient spatial objects in terms
of prominence and distinctiveness [45] and are often used to locate other, less prominent
places. Thus, landmarks should ideally have larger search spaces considering their in-
fluences compared to less prominent places from the same granularity. The degree of
prominence of a relatum can be measured by the frequency of references to this place in
all collected place descriptions. Also, prominence can be discretised using a two-valued
logic: prominent and not prominent.

Granularity of the spatial discourse. This factor is similar to the scale effect identified
by Yao and Thill [58], introduced here as the granularity of the spatial discourse. For
example, the relation near in the description “near Eiffel Tower” can be interpreted
differently in different discourses. For example, a place description could completely
be located to a limited area near the tower, or could cover the whole city of Paris. For
a triplet, the granularity of the spatial discourse can be obtained by first collecting all
places from the same description (which has been indexed) and selecting the coarsest
granularity category (from the named five) among these places, or, if all places are of the
same category, one level up. Consider the example “Richmond is near the CBD” (both
are from district-level). In this case, it makes sense to limit the spatial discourse to city-
level, since neither a suburb nor a city’s centre can be larger than the city that contains both.

A combination of contextual factor values is called a contextual criteria set (CCS), e.g.,
{granularity of the relatum: building, granularity of the locatum: building, prominence of the
relatum: prominent, granularity of the discourse: district}. For each of the four contextual
factors, an additional value undetermined is defined in case a value cannot be determined.
A spatial relation will have one search space derived for each possible CCS. Using this
method, search spaces for relations even not included in the formal ones discussed above
(e.g., at) can be derived.

For a given triplet with relatum as an anchor place, the following approaches are used
to associate it to one of the defined CCSs. The granularity of the relatum will be determined
by mapping the stored place type of the relatum in the gazetteer (which is typically from
a taxonomy) to one of the six granularity categories by a dictionary. The granularity of
the locatum will be determined similarly, through identifying place type keywords from
the stored place references of the locatum. For example, if keywords such as “building”,
“park”, or “city” occur, the locatum will be assigned with a granularity level accordingly.
If dictionary matching fails, e.g., the granularity of the reference “the place” cannot be de-
termined, the value of locatum granularity will be undetermined. Since the granularities
of all places (as locata or relata embedded in triplets) can be determined, the granularity
of the spatial discourse can be derived as well based on the rule defined above. For the
prominence of the relatum, we used node in-degree as the number of references made to
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particular places, similar to the approach proposed in [26]. To translate absolute measures
of prominence (in-degrees) into relative measures of significance (prominent and not promi-
nent), the median in-degree value is used as threshold.

In the remaining part of this section, we propose three different models for representing
search spaces.

Density surface model. The first model is based on Kernel Density Estimation (KDE), a
non-parametric method to estimate the probability density function of some observation
data. It provides a tool to visually represent vague concepts, and each region on the gener-
ated density surface represents the relative likelihood of a new observation within it.

Figure 9 (a) shows an example search space generated through KDE for near given a
CCS: {granularity of the relatum: building, granularity of the locatum: building, prominence
of the relatum: not prominent, granularity of the discourse: street}. Assuming a set of train-
ing triplets that satisfy the CCS, for each triplet, the location of the locatum is regarded
as a position vector relatively to the location of the relatum and mapped on a 2D plane.
The result is a point cloud as the input of KDE. The generated density surface provides an
intuitive representation of the search space of near of the CCS.

Regression model. The regression model aims at smoothing the density surface gener-
ated through KDE and avoid overfitting. For this purpose a Gaussian Process Regressor is
used. A Gaussian Process is a generic supervised learning method designed to solve regres-
sion and probabilistic classification problems. The prediction interpolates the observations
and is Gaussian probabilistic, and thus allows for deriving meaningful ALRs. Another
reason for applying GPR is that, individuals use and understand spatial relation phrases
differently, and thus results in multi-component distributions aggregated for search spaces.
Figure 9 (b) shows the result after regression using the same data.

Tessellation-based model. As the second model, a hexagonal partition of the space is
defined. Examples (with different cell sizes) using the same training data are shown in
Figure 9 (c, d). The model generalizes certain details and has a reduced computational
complexity compared to the KDE model when used in the next phase. Choosing different
cell sizes can affect the generated search spaces, as can be seen from the two subfigures.
Generally, a smaller cell size will more likely result in more dynamics (less smoothing).

3.3.3 Approximate location region

An approximate location region (ALR) is a derived region that represents the approximate
location of a place based on all known spatial relationships to some anchors, and is com-
puted by integrating all the search spaces of these relationships, as well as the spatial context
by intersection. The spatial context of a place graph is defined, in this search, as a buffer
region based on the minimum bounding box of the locations of all the anchor places, with a
buffer distance equal to the cluster distance. A default spatial context is acting as a fallback
approach to locate places if they do not have any available spatial relationship knowledge
to anchor places. An example of a spatial context is illustrated by the dashed circular region
shown in Figure 4.

For the sample input place graph, integrating different search spaces as formal models
for deriving ALRs for nodes b and e is illustrated in Figure 10 (a). Place b from the sample
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Figure 9: Example of the density surface generated by KDE (a), the density surface gener-
ated by regression (b), and the hexagon representation generated by tessellation (c, d) for
near trained for a specified CCS, based on relative locatum locations (distance [meters]).

graph has no gazetteered references; however, three relationships are available, i.e., east
of a, south of c, and near c. Knowing that a and c are already georeferenced in the pre-
vious phase, the location of b can be constrained by the shaded region representing the
ALR where b is most likely within. Thus, gazetteer entries outside the region will not be
considered for matching in the best-matching phase (following).

Integrating search spaces as probabilistic models, i.e., KDE-, tessellation- and
regression-based, leads to slightly different ALRs. Given n search spaces generated by
the KDE or regression models, Equation 3 presents a product operation for integration.
In the equation, s(x, y) stands for the value of a search space at location (x, y), and p(x, y)
stands for the value of the derived ALR at location (x, y). The value of p(x, y) represents the
relative likelihood of a place to occur at that location. For the hexagon tessellation model,
s(x, y) is instead computed by the number of observation points within the cell divided by
the total number of points in the input point cloud. Figure 10 (b) illustrates the integration
process for two search spaces generated by KDE (the blue and green contour lines) into
an ALR density surface. In order to use the new search spaces in the later georeferencing
process, the values in such an ALR are normalized between 0 and 1. If a crisp boundary is
required (e.g., for visualization), a threshold value for membership can be selected.

p(x, y) =

n∏
i=1

si(x, y) (3)

3.4 Gazetteer best-matching

In the last (third) phase, ALRs are used for attempting gazetteer entry matching. This is
done by first collecting all gazetteer entries within the ALR of each of the remaining place,
and then choosing the one that is most likely to be the actual entry the place reference
addresses. Three measurements (each between 0 and 1) are considered for best matching.

Reference string similarity. Reference string similarity measures how well a place name
from a candidate gazetteer entry matches a place reference in string. Existing algorithms
are many, and a comprehensive comparison for toponym matching is provided in [42]. The
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Figure 10: An example of deriving the ALR (the shaded region) for Place b through integrat-
ing three search spaces (Source: Google Maps, 2015) (a) and deriving an ALR by integrating
two probabilistic search spaces into a new density surface (b) (distance [meters]).

selection of the algorithm is dataset dependent, and in this research we use the Damerau-
Levenshtein algorithm [8, 30]. It is a commonly used algorithm for matching tasks such as
gazetteer conflation or points of interest matching in the literature. It is expected to perform
well on our dataset since many place references from the dataset are short, incomplete, and
vernacular.

Semantic similarity. Semantic similarity measurements have been extensively studied
in communities such as information retrieval. In this research we use the Jiang-Conrath
distance [21] over WordNet synsets as lexicons for measuring semantic similarity word-
wise, e.g., “woods” and “forest”, or “department” and “section”. It is a common algorithm
and similar implementations for other tasks already exist (e.g., [2]). Abbreviations (e.g.,
“bldg” vs. “building”) are considered as having 1.0 semantic similarity. Additionally, we
consider place type keywords associated with gazetteer entries as well to assist matching,
if available. Taking the gazetteer of OpenStreetMap1 for example, tagging information
is stored with most entries, e.g., {name: Peter Hall Building; type: building; organization:
unimelb; department: Mathematics}. The highest word-wise semantic similarity value will
be returned.

Spatial relation satisfaction. Spatial relation satisfaction is for measuring how well a
gazetteer entry at a certain location satisfies the given spatial relationships. For formal
search space models, this is computed considering orientation, distance, and topology. For
example, if two entries obtained for the place reference the large square for node b in the
sample input place graph have the same name, they can only be ranked by their closeness
to the anchor place St Paul’s Cathedral given the spatial relationship near.

Methods for computation are shown in Figure 11. The shaded regions indicate search
spaces. Nearness satisfaction is measured by the distance between the locations of the entry
and the relatum, and must be between 0 (furthest) and 1 (closest). Orientation satisfaction
is measured by the angle between the displacement vector starting from the relatum to the

1https://www.openstreetmap.org/
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entry location, as well as the direction specified by the relation (1 for 0◦ and 0 for 90◦).
Topology satisfaction is measured by computing the topological relation between the two
places, and can be either 0 (not satisfied) or 1 (satisfied). If an entry does not satisfy a given
topological relation constrain, the entry will be excluded immediately. Topological relation
computation can be implemented using existing libraries with models such as DE-9IM [50].

Figure 11: Illustration for spatial relation satisfaction for near with relatum in the middle
(a), north of with relatum at the bottom (b), and overlap with relatum in the middle (c).

For contextualized probabilistic-based search spaces, an ALR represents the likelihood
of a locatum being at different locations. Thus, the value for spatial relation satisfaction
for a given candidate entry is simply the value of the ALR at the location of the entry. The
values have been normalized and, thus, must be between 0 and 1.

Overall scoring. For each candidate gazetteer entry, the overall score is calculated by
Equation. 4 in a weighted multi-attribute manner. Different weights will be tested in the
implementation stage. Table 2 shows an example of calculating the overall scores for three
candidate entries for node b. For each of the two place references Fed Sq. and large square
stored with node b, values of the three measurements for the three candidate entries (Ian
Potter Centre, Federation Square, and Kirra Galleries) are calculated. After overall scoring, the
highlighted cell in the last column of the table, i.e., Federation Square with the highest score
0.7, will be used for georeferencing node b.

OverallScore = W1 ∗ StringSim+W2 ∗ SemanticSim+W3 ∗ SpatialSat (4)

Place Place reference Candidate entry Overall score

node b Fed Sq. Ian Potter Centre 0.37
Federation Square 0.70

Kirra Galleries 0.22
large square Ian Potter Centre 0.43

Federation Square 0.63
Kirra Galleries 0.27

Table 2: Example of best-matching for node b based on computed overall scores.

At the end of this phase, a score threshold is necessary to decide whether the matching
process was able to find a gazetteer entry. Different threshold values will be tested in the
implementation stage. A non-gazetteered place, such as node f from the sample graph,
will then be georeferenced only by its ALR. With such a representation, the location of the
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place can further be described using anchoring theory [15]. Thus, the place can be regarded
as anchored to a location just by stating what is known with certainty and leaving the rest
for further reasoning. Here, the place can be described as anchored in its derived ALR.

4 Implementation and experiments

The approach has been implemented using Python. The Neo4j graph database2 is used for
storing place graphs and for querying spatial relationships. This section first describes the
input datasets and preprocessing procedure, and then experimental results from the three
phases will be given.

4.1 Data overview and preprocessing

Two input place graphs are used for experiments. The first one contains descriptions sub-
mitted by graduate students about the University of Melbourne campus. It has richer spa-
tial relationships among places and more focused spatial coverage compared to the second
dataset. The second graph was harvested from web texts for places around and inside
the area of the Greater Melbourne, Australia [24]. The sources for the Melbourne dataset
include: WikiMapia as a collaborative mapping platform with user generated place de-
scriptions; Wikipedia articles with descriptions of places; business sites or official sites with
descriptions related to locations such as of companies, shops, and restaurants; and blogs
with descriptions focused on individual interests such as tourism. The types of geographic
features in the datasets vary from fine-grained local points of interest to large geographic
features such as nature reserves. Descriptions from certain sources are more likely to in-
clude certain types of places. For instance, business sites typically focus on urban contexts,
while tourism articles may be from either urban contexts or natural environment contexts.
It is also observed that places from urban contexts are noticeably finer in granularity and
more frequent than places as natural geographic features from the datasets. Two exam-
ple descriptions from the two datasets are shown below respectively, with place references
highlighted:

“... If you go into the Old Quad, you will reach a square courtyard and at
the back of the courtyard. You can either turn left to go to the Arts Faculty
Building, or turn right into the John Medley Building and Wilson Hall [...] If
you continue walk along the road on the right side where you’re facing Union
House, you can see the Beaurepaire and Swimming Pool. There will also be a
sport track and the University Oval behind it ...”

“... St Margaret’s School is an independent, non-denominational day school
with a co-educational primary school to Year 4 and for girls from Year 5 to
Year 12. The school is located in Berwick, a suburb of Melbourne [...] In
2006, St Margaret’s School Council announced its decision to establish a brother
school for St Margaret’s. This school opened in 2009 named Berwick Gram-
mar School, currently catering for boys in Years 5 to 12 ... ”

2https://neo4j.com/
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The two input place graphs were preconstructed from triplets extracted by the parser
described in [34] and have been used in previous research [25, 26]. Before the construc-
tion of these graphs, all triplets had been cleaned manually, since the parser also extracted
noises such as person names, temporal expressions, and metaphors. Triplets with such
noises were stripped off beforehand, as place reference extraction is outside the scope of
this research.

In order to create ground truth for both training the contextualized probabilistic search
spaces as well as for evaluation, the locations and granularities of all places from the
two datasets are manually grounded, and anchor places are linked to their correspond-
ing gazetteer entries. We also refer to the original descriptions for assistance. The two
graphs consist of more than 5000 triplets, and proportions of different places from the three
situations regarding gazetteer entries are shown in Table 3. Part of the campus graph is
shown in Figure 12 as an example, illustrating the input to the following experiments.

Table 3: Proportions of places from the three situations in the two input place graphs.

Place graph Total nodes Anchor place Gazetteered Non-gazetteered

Campus 256 56 (21.9%) 143 (55.9%) 47 (18.4%)
Melbourne 3520 974 (27.8%) 1684 (47.8%) 862 (24.5%)

Figure 12: Part of a place graph constructed from University of Melbourne campus descrip-
tions (left); and a different visualization with node size corresponding to node degree, and
edge size corresponding to number of relationships between the linked nodes (right).

4.2 Resolving anchor places

Three gazetteers are used in conjunction for retrieving entries, aiming for completeness:
OpenStreetMap Nominatim geocoder 3, GoogleV3 geocoder 4, and GeoNames 5. The num-

3https://nominatim.openstreetmap.org/
4https://developers.google.com/maps/documentation/geocoding/intro
5http://www.geonames.org/
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bers of ambiguous gazetteer entries retrieved for anchor places from the two input place
graphs are shown in Figure 13, representing the ambiguity of references to these places.
For example, the name St Margaret’s School in the description example from the last section
has a total of 11 corresponding entries from our used gazetteers.

Figure 13: Numbers of ambiguous entries of anchor places from the two input place graphs.

Figure 14 illustrates the procedure from initial input point clouds to the disambiguated
anchor place locations after clustering. Precisions of disambiguation are given in Table 4.

Table 4: Precisions of anchor place disambiguation.

Place graph Campus Melbourne

Precision 96.4% (54 out of 56) 91.9% (895 out of 974)

4.3 ALR derivation and best-matching

The input to this phase are the remaining unresolved places from the first task. This section
first clarifies how contextualized probabilistic search spaces are trained, and then results
will be given.

We use 10-fold cross validation for training and evaluating contextualized probabilistic-
based search spaces. Specifically, triplets from the input place graphs are divided into
10-folds, and the search spaces for triplets in each fold are trained using ones from the
rest based on the annotated granularity and location information. In the testing stage, the
georeferencing procedure does not require further manual intervention. WordNet is used
for creating dictionaries for determining the granularities of place from the test dataset.

We also tested the robustness of the training approach by reducing the amount of train-
ing data and compare the results, in order to evaluate the sensitiveness of the approach
regarding the amount of training data. A comparative example is presented in Figure 15.
The figure on the left side is same as Figure 9 (a), while the figure on the right side shows
the search space derived based on removing 80% of random training points. The result

JOSIS, Number 17 (2018), pp. 31–62



50 HAO CHEN, MARIA VASARDANI, STEPHAN WINTER

Figure 14: Deriving cluster distance for input point clouds from the campus graph (top)
and the Melbourne graph (bottom); generating clusters for disambiguation (middle) from
point clouds, and disambiguated anchor places forming spatial contexts (right).

indicates that even with a largely reduced amount of training data, meaningful and sim-
ilar search spaces can be derived. Note that similarity is defined here by comparing to
search spaces generated for other CCSs in terms of distributions by distance (c.f., Figure 16).
Therefore, it is safe to say the training approach is reasonably robust and does not rely on
large amounts of training data.

Figure 16 gives examples of several trained search spaces. As shown in the three fig-
ures at the top, the area of the search spaces grows as the granularity of the relata becomes
coarser, with other contextual factor values preserved. The search space for any relative di-
rection is derived using training triplets with any of the four relative direction relationships
(in front of, left, right, back); since, for this particular case, we are more interested to explore
the metric distance details through the generated search space, as there is currently no tech-
nique to automatically infer the reference frames and directions used in place descriptions.

The results of georeferencing using both formal and contextualized probabilistic-based
search spaces are shown in Table 5. Three evaluation metrics are employed:

1. Precision: the percentage of places correctly linked to their gazetteer entries.
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Figure 15: Comparison of KDE-based search space generated by removing 80% of random
input training points (right) with the search space generated with full training points (left)
for testing the robustness of the training approach (distance [m])

2. ALR precision: the percentage of places with their corresponding gazetteer entries
located within their derived ALRs.

3. Mean and median distance error: the mean and median distances for all distances
between the gazetteer entries matched and the ground truth ones.

Table 5: Georeferencing performance by search space models for the two input graphs

Graph Evaluation metrics Formal KDE Tessellation Regression

Campus Matching precision 36.3% 39.5% 39% 40.5%
ALR precision 84.2% 93.2% 85.3% 94.7%
Mean distance error 195m 153m 171m 144m
Median distance error 96m 72m 88m 69m

Melbourne Matching precision 29.4% 32.5% 30.1% 34%
ALR precision 73.8% 92.6% 85.5% 97.5%
Mean distance error 7203m 5863m 6752m 5217m
Median distance error 2410m 1675m 2250m 1469m

Figure 17 (a) shows matching precision according to overall score, i.e., the precision of
places matched with score equal or greater than a threshold. Figure 17 (b) and (c) shows
the distance errors for individual places from the two input graphs using different models.

In order to further understand how each of the three similarity measurement influences
the best-matching result, a comparison of matching precisions when applying different
weights of Equation. 4 is provide in Table 6. The experiment is based on a grid search of
weights with 0.1 as change interval (except for the equal weighted function as shown in the
fist row). The previous results shown in Table 5 are based the best-performing weights.

Finally, we classified non-gazetteered places by testing different thresholds of best-
matched scores, and the resulting precisions and recalls are shown in Figure 17 (d). Fig-
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Figure 16: Search space examples for triplets with building-level locata that have certain
spatial relationships to relata from different levels, with prominence and spatial discourse
granularity undetermined, generated by KDE model (distance [meters]).

Table 6: Matching precisions with different weights of the overall measurement function
when applying the regression model

Overall measurement function W1 W2 W3 Matching precision

Equal weights for three similarities 0.33 0.33 0.33 25.3%
Only string similarity 1.0 0.0 0.0 28.1%
Only semantic similarity 0.0 1.0 0.0 12.3%
Only spatial similarity 0.0 0.0 1.0 2.2%
String and semantic similarity 0.5 0.5 0.0 22.5%
String and spatial similarity 0.5 0.0 0.5 10.9%
Semantic and spatial similarity 0.0 0.5 0.5 6.4%
... ... ... ... ...
Best performing weights 0.5 0.3 0.2 34.4%

ure 18 provides an example of visualizing the approximate location of a non-gazetteered
place swimming pool on the map by its ALR, given two relationships <swimming pool, near,
University Oval> and <swimming pool, right of, Tin Alley> (the two relata are anchor
places). The search spaces have been given crisp boundaries for visualization purposes
using different thresholds.
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Figure 17: Precision by best-matching scores (a); distance errors by place for the two graphs
(b, c) for both formal and regression-based model (distance [meters]); precision and recall
trade off for identifying non-gazetteered places by thresholding (d).

5 Discussion and evaluation

Given the ambiguities of anchor places shown in Figure 13, the result from Table 4 indicates
that the clustering-based approach is feasible for disambiguation. Failures are due to three
reasons. First, some place references are classified as anchor places but are actually not.
For example, Gate 4 is referring to an non-gazetteered place in the University of Melbourne
campus but was identified as an anchor place, since there is a gazetteer entry with the
same name and it was captured by clustering. Second, references to different places may
be merged incorrectly by the graph merging approach developed in [27], causing incorrect
georeferencing of some references. For example, two buildings with similar references are
both described to be near the same landmarks in the campus datasets, which are distinct
places but are merged to the same node. In our dataset this only affects gazetteer matching
(step three) of few places. Third, some anchor places are still ambiguous after the addi-
tional disambiguation process, as no sufficient spatial relations are available for further
disambiguation.

Georeferencing places without gazetteered references is the main focus and motivation
of this research, and the task has been largely ignored in the literature. The formal mod-
els are borrowed from fields including Artificial Intelligence and geographic information
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Figure 18: Example of representing the location of swimming pool on map, given two spatial
relationships to two anchor places. Search spaces of the two relations as contours (a); crisp
ALR with 0.95 as threshold (b); crisp ALR with 0.5 as threshold (c); ground truth location
of the place (d) (Source: Google Maps, Jan 2018).

retrieval. The contextualized probabilistic based models are novel as they are generalized,
contextualized, and scalable, instead of being specific to certain relata as in previous stud-
ies, such as a density field representing places near London [12, 19, 48]. We also leverage
these models for the new problem (i.e., georeferencing) at hand. The approach works on a
place graph constructed from a single, short description as well, e.g., “the place is in the Uni-
versity of Melbourne, near the ERC library”; although for experiments we use collective,
merged descriptions in order to georeference more places by providing a more complete
knowledge network.

Some examples of trained contextualized probabilistic search spaces given some CCSs
are shown in Figure 16. The training process relies on manually annotated data, while the
corresponding georeferencing process is purely automatic. Some interesting observations
can be made during the training stage. In the sample corpora, people tend to use certain
relations under specific contexts. For instance, prepositions expressing relative directions
are frequently used between building-level places, but rarely for places with granularities
equal to or above district level. Prepositions expressing cardinal directions, on the other
hand, are used more flexibly. Prepositions expressing qualitative distance relationships,
such as near and at, are generally less frequently used when referring to places with gran-
ularities larger than street level. Topological relationships are typically used to describe
relationships between places of different granularity levels (mostly inside). We also notice
that the granularity of the relatum is the most influential contextual factor on the shapes of
search spaces in most of the contexts, followed by granularity of the locatum, spatial dis-
course granularity, and prominence. Some factors are more influential in certain contexts,
e.g., the search spaces for near with prominent building-level places as relata are signifi-
cantly larger than with less prominent ones.

The georeferencing results for places without gazetteered references are shown in Ta-
ble 5. The regression model performs best for all of the four evaluation metrics for both
place graphs. The results given by the KDE and the tessellation model still perform better
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than the formal model. A trade off exists between (matching) precision and ALR precision.
This is because larger ALRs tend to result in higher ALR precision, but at the same time
are less restrictive, thus may reduce matching precision. Therefore, we also use mean and
median distance errors to provide additional information about to what spatial resolution
the derived ALRs are limiting the location of the places to be georeferenced. In summary,
the ALR precisions show that most ALRs derived capture the location of the places to be
georeferenced, while the distance errors are constraining enough considering the spatial
resolution of the spatial contexts shown in Figure 14.

When comparing the formal models and contextualized probabilistic models, the in-
creases in ALR precisions are not simply because the areas of the new search spaces are
larger. In fact, search space areas for places that are finer in spatial granularity (e.g.,
building- and street-level) have generally decreased; yet most of them can still capture
the ground truth locations of places to be georeferenced. Search spaces for places from
coarser granularities, on the other hand, have generally increased and become able to cap-
ture more ground truth locations. Thus, contextualized probabilistic based search spaces
are more flexible to accommodate different contexts compared to the formal ones. Ad-
ditionally, they provide likelihood distribution information which is useful for location
visualization, particularly for non-gazetteered places. An example is given in Figure 18.

Additional experiment results are provided in Figure 17. Figure 17 (a) shows the georef-
erencing precision by best-matching according to matched score. Place references matched
with similarities over 0.9 are generally around 90%. Overall, places matched with higher
overall similarities are more likely to be correctly georeferenced. Figure 17 (b) and (c) plots
the distance error for each individual place, to assist the interpretation of the previous pro-
vided mean and median distance errors. There are some (relatively) small proportions of
places with significantly larger distance errors than the other places, due to either incor-
rectly georeferenced anchor places (error propagation) or the lack of spatial relationship
knowledge. For example, if a place has no spatial relationship available to any anchor
places, its ALR will be determined loosely by the whole spatial context, which could be
significantly larger compared to other ALRs constrained by spatial relationships. In addi-
tion, an input place graph may include spatial relationships that are not true, either due
to the imperfection of the parser, or mistakes by the descriptors. Still, such places can be
located with a reasonable distance error, when comparing several kilometers as shown in
Figure 17 to the whole area of the Melbourne dataset (Melbourne has a diameter of 120
km).

For the best-matching process, there are two reasons for failures. One is that some
derived ALRs are not capturing the true locations of the corresponding places. The other
is because some place references are too vernacular and different from their gazetteered
names thus are challenging to be linked matched. Different weights of Equation. 4 for
overall similarity measurement have been tested, as shown in Table 6. The result shows
that string similarity generally plays the most important role in the matching process, while
spatial similarity is least important. A likely reason is that the obtained gazetteer entries for
each place to be matched have already been filtered by spatial relationship search spaces,
thus string and semantic similarity are more effective for further ranking these entries than
spatial similarity.
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6 Conclusions

Place descriptions occur in everyday communication as a way of conveying spatial infor-
mation about place, and the web provides a plethora of place descriptions as texts in var-
ious forms. An important step to utilize the contained knowledge of these descriptions in
an information system is to decode the spatial references, as well as to identify the places
referred to, including their location. This research develops an approach for georeferenc-
ing references to places regardless of whether the references are gazetteered or not. The
approach is also able to locate places that do not exist in gazetteers, based on spatial con-
text as well as relations to landmarks. The approach has been implemented and tested
with datasets collected from different sources and with different sizes, place densities, and
spatial granularities.

This research starts from a place graph constructed from collective place descriptions as
input, which is regarded as a knowledge base model for place references and their spatial
relationships. The proposed georeferencing approach consists of three main stages. First,
some anchor places are identified and disambiguated for an input graph based on gazetteer
matching and a density-based clustering method. Next, for each of the remaining places,
their spatial relationships to the anchor places are used for deriving representations of their
approximate locations. Finally, gazetteer entries that satisfy the relational constrains for
each place are used for best-matching considering string, semantic and relational similarity
satisfaction, and the top ranking entry will be used for georeferencing the place. Even if
the matching fails, i.e., the place is non-gazetteered, the previously derived approximate
location representation can be used to visually locate the place on a map.

We used both formal spatial relationship models as well as several contextualized prob-
abilistic based ones trained from data, for various prepositions referring to spatial rela-
tionships from four different families: cardinal directions, relative directions, qualitative
distances, and topology. The contextualized probabilistic based models are determined by
four factors as variables and generalized with sound scalability. We use multiple metrics
to evaluate these models, and the result shows that the contextualized probabilistic models
are able to accommodate flexible contexts compared to the formal models. The method
performs reasonably well in terms of precisions and distance errors, considering the spa-
tial resolutions of the graph coverages as well as the novelty of the problem compared to
relevant research discussed in the literature.

We interpreted the obtained results and discussed the major observations, failure cases
as well as their reasons. The major limitation of this research is the relatively small train-
ing dataset for deriving the contextualized probabilistic search spaces, particularly under
certain context criteria. Although the presented models are designed to be generalized
enough and only require a small number of training samples, a richer training dataset is
still expected to further increase the georeferencing performance. Also, in this research
we only consider contextual factors that are automatically obtainable from an input place
graph, while in the literature there are other factors identified that can affect the interpreta-
tion of spatial relationships, such as traveling mode and familiarity with the environment.
In the future, the contextualized probabilistic search space models proposed in this work
can be further refined by these factors. In addition, there is currently no link between
search spaces for different contexts, as they are trained using different data, even though
the contexts may be similar. This results in difficulties in interpreting how the contextual
factors affect search spaces of spatial relations.
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This research presents a feasible approach to georeference places in a place graph that
is constructed from collective place descriptions. The outcome has potential benefits to
other research fields including geographic information retrieval which heavily relies on
techniques that are able to automatically georeference places from text documents. An-
other application area is the automated location of callers to emergency authorities during
accidents or a crisis, which can quickly fail when facing vernacular place descriptions with
non-gazetteered place references and qualitative spatial relationships. The standard avail-
able geographic information systems (such as national address files) used in such situations
are possibly not detailed enough for localization with regard to vernacular or granularity.
Furthermore, the presented approach is able to enrich authoritative datasets, such as digital
gazetteers and address databases, with people’s local geographic knowledge. Finally, re-
search about place knowledge using place graphs could help with better understanding hu-
man descriptions as input to spatial services, and thus support smoother human-computer
interaction. The developed approach in this work can better capture the vagueness of loca-
tions, and can be used to build interfaces to better communicate the location of unknown
locata by providing visual aids.
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