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Abstract: The spatial and temporal thresholds (K and T ) are two key parameters that con-
trol the performance of the prospective space-time scan statistical (PSTSS) hotspot method.
This study proposes an objective function approach, in which the optimal values of K and
T that maximize the mean hit rate (a measure of predictive accuracy), are determined. The
proposed approach involves sweeping through a range of values defined for each parame-
ter and monitors their impacts on the mean hit rate. A case study of the crime data sets of
the South Chicago area is presented in which 100 one-day consecutive predictions are car-
ried out. Two aspects of the derived results are significant. First, is that there is a trade-off
between the predictive accuracy obtainable from the use of PSTSS and the level of hotspot
coverage. Second, is that K is found to have more influence on the accuracy than T . As K
increases in size, the accuracy level decreases, whereas there is no notable impact of T on
the accuracy, particularly when T ≥ 30 days. This study also demonstrated the distinctive-
ness of PSTSS as a hotspot method as compared to other conventional hotspot methods.
Lastly, it is argued that the approach demonstrated in this study is not only applicable to
crime hotspot prediction, but could also be used in many other domains where the PSTSS
technique is used.

Keywords: objective function, spatial and temporal thresholds, scan statistics, predictive
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1 Introduction

The space-time scan statistic (STSS) is one of the most commonly used geographical surveil-
lance techniques for detecting clusters of geographical phenomenon [15]. It is based on
the idea of exhaustive scanning of geographical space using a continuously changing-in-
size space-time window (usually represented as a cylinder), which identifies regions of
unusual concentration of geographical events relative to an expected background risk for
the neighborhood. Depending on the application domain, the identified regions, otherwise
referred to as clusters, may be used for decision-making processes. For example, STSS has
been used in the public health domain [9, 15] in order to detect the outbreak of diseases
so that infected people or locations can be quarantined. A recent application of STSS is in
criminology, for example using clusters of crime identified by STSS to model risk hotspots,
through which police patrols can be planned. This technique of predictive hotspotting was
pioneered in [3], where it was called the prospective space time scan statistic (PSTSS).

A sequel to this study was conducted by Adepeju and Cheng [1], where the spatial
threshold (K) which is most appropriate for crime prediction was determined. In the PSTSS
method, the K and T represent the fixed maximum spatial size and maximum time length,
respectively, of the scanning window. Despite the growing use of the PSTSS technique
across different application domains and the significant impact on computing time, the best
strategy for determining the optimal value of K and/or T has remained an open question.

In epidemiology and public health applications, for which the PSTSS was originally
introduced, there is a standard setting for the values of K and T . For K, it is set as 50% of
either the population at risk or the actual geographical size of the area, where all measure-
ments are based on Euclidean distance. This large percentage is generally recommended
to allow clusters of both small and large sizes to be detected without any pre-selection
bias. Also, for T half the length of the study period is recommended for the same reason
that it will allow potential clusters of any temporal durations to be identified [15, 19]. In
crime analysis these settings of K and T have been used for detecting historical hotspots
of crime [8, 16], but not for short-term crime hotspot prediction, where a daily predictive
hotspot is normally used to inform decision processes like operational briefings and police
patrols. A few other studies have also proposed using a rough estimate for K and T based
on the visible spatial aggregation in the data set [3, 18]. While this turned out to be a good
idea in terms of faster computation, the predictive accuracy of the PSTSS, in terms of the
level of true crimes predicted for a space, was very low as compared to other predictive
methods. Moreover, while the major focus in the past has been on determining the best
value of K, the temporal counterpart, T , has been completely ignored. Therefore, this
study aims to address this research gap.

The application of the PSTSS for crime hotpot prediction is justified from the viewpoint
of the repeat and near repeat victimization (RNRV) theory of crime [1]. The RNRV theory
states that if a person, place, vehicle or other target, however defined, is victimized, the
targets within a relatively short distance of the original target have an increased risk of
being victimized over a limited period of time, varying from days to weeks and up to a
couple of months of the original victimization taking place [4,12]. The distance and the time
period within which the re-victimization is expected are called the spatial and temporal
thresholds. Such distances and times can be envisaged as cylinders in space-time. When
the PSTSS is run prospectively the identified cylinders, or emerging clusters, are assumed
to represent the most likely locations of re-victimization. It is therefore argued that if the
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value of K and T are carefully selected for the PSTSS technique, not only is the technique
capable of capturing the RNRV but also it will result in the improved accuracy of hotspot
prediction [1].

For crime, a short-term prediction involves anticipating future crime within a very small
time window, such as the next one or two days [5]. These are the most relevant time win-
dows for policing operations, such as patrolling and emergency response. Thus, in order
to effectively capture the emerging clusters that are indicative of the most imminent future
crimes, both the K and T settings have to be chosen very carefully. Yet, there has been no
consensus on the best way to undergo this parameter setting. Although, the general belief
is that the larger the values of K and T , the higher the possibility there is of detecting the
most relevant clusters; this ignores the fact that too many spurious clusters (false alarms)
may also be included in the results. Equally, a too small value of T may prevent the de-
tection of the most relevant spatial and temporally long clusters. Hence, one objective of
this study is to investigate all these assumptions and examine how they will impact the
performance of the PSTSS for short-term crime hotspot prediction. Overall, the main goal
is to determine the most appropriate settings for K and T , which will thus optimize the
chosen performance criteria.

Generally, the evaluation of the performance of any predictive hotspot method has been
a subject of debate, both within the academic and the law enforcement environment. As a
complicated construct of neighborhood and population at risk, predictive hotspots (clus-
ters) are almost impossible to investigate through ground-truthing. In this study, it is ar-
gued that the performance of a hotspot technique should be based on intuitive meanings
linked pragmatically to operational policing. For example, since a predictive hotspot is a
representation of locations where imminent crimes are likely, if we overlay such imminent
crimes (in retrospect) against the locations already identified as risky, the exercise should
tell us how effective the hotspot is as a representation of a vulnerable location. This can
therefore be referred to as the predictive accuracy of the hotspot. This idea was originally
proposed as the hit rate [5]. Furthermore, the aggregation or disaggregation of hotspot
regions across an area may also be used to evaluate the amount of time required to visit
all the hotspots—an idea which may be translated as easiness to patrol. A compilation of
similar ideas can be found in some previous studies such as [6] and [3]. These studies
mainly focused on the comparative analysis of different hotspot methods based on these
performance measures.

It was highlighted in Eck et al. [11] that the choice of some predictive parameters in
the presentation of a hotspot map still presents itself as a problem since most analysts fail
to question the validity of estimated hotspots in achieving a preferred result. Yet, there
have been very few studies on how to choose the best parameter setting to generate the
most robust output, based on the performance criteria chosen. Thus, this study aims to
address this research gap by focussing on the two most basic parameters of predictive
hotspot algorithms—the spatial threshold and the temporal threshold—using the PSTSS
as an example.

In order to examine the uniqueness of PSTSS for crime prediction, its results will be
compared with that of a commonly used hotspot method called the Prospective KDE [3].
The Prospective KDE will henceforth be denoted as PKDE. The objective of this comparison
is to investigate the similarities and/or the differences between the PSTSS and a conven-
tional hotspot method, in relation to the chosen performance criterion (i.e., the hit rate).
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1.1 The significance of this study

This study proposes an objective function approach to determine the best values of the
spatial and temporal thresholds (i.e., K and T ) for the PSTSS for crime prediction. This
study is an extension of the Adepeju and Cheng [1] study to include the interplay between
K and T on the hit rate measure as the objective function to be maximized. The aim is
to make recommendations on the selection strategy of these two parameters, in relation
to crime data sets of different spatial and temporal characteristics during short-term crime
hotspot prediction. It is argued that the result of this study will not only be relevant to
crime data sets but also to other geographical data domains, where the STSS and PSTSS are
being applied.

The remainder of this paper will be organized as follows. Section 2 provides a descrip-
tion of the PSTSS technique in relation to the parameters K and T . This also includes an
explanation of how the predictive hotspot is generated from the results of the PSTSS tech-
nique. In Section 3 the objective function—the hit rate—is described. Section 4 presents the
case study data set and the discussion of its spatial characteristics. Furthermore, the param-
eter settings for K and T and the prediction and evaluation details are described. Section
5 presents a discussion of the results. Lastly, conclusions and future work are discussed in
Section 6.

2 The prospective space-time scan statistic (PSTSS), and its
spatial and temporal thresholds

The PSTSS technique attempts to identify regions in space and time, represented by cylin-
drical shapes, of elevated risks relating to a geographical point data set, N , relative to a
background risk of the area [15]. The technique works by placing, on every unique point
location (x, y, t), a cylinder whose width and length are continuously increasing until a
maximum value of K and T are reached along the x, y dimension and t dimension, respec-
tively. Both the width and the length of a cylinder are increased systematically in such a
way that the next cylinder size contains a total number crimes that is greater than that of
the previous cylinder size by just one crime. By so doing, a very exhaustive scanning is en-
sured. The K and T are referred to as the maximum spatial scan extent and the maximum
temporal scan extent (T ), respectively. These are shortened as spatial threshold and tempo-
ral threshold, respectively. A likelihood ratio, S, representing the risk level of each cylinder
is calculated by comparing the observed number of events and the expected number of
events within the cylinder. Lastly, all the cylinders are filtered such that only high risk,
non-overlapping cylinders are reported. The non-overlapping cylinders are considered in
order to simplify the results. The PSTSS has been widely applied in several fields including
epidemiology [21], public health [15] and criminology [3].

The PSTSS method is distinct from the general STSS approach in that we only consider
clusters continuously extending up to the present time, instead of considering all clusters,
including those which are strictly separated into the past (see Figure 1a). Clusters existing
up to the current time are indicative of locations where repeat victimizations are expected
imminently [3].

The space time scan statistic which we consider is given in [15] as:

www.josis.org

http://www.josis.org


DETERMINING THE OPTIMAL SPATIAL AND TEMPORAL THRESHOLDS OF THE PSTSS METHOD 61

S =

(
nw
µw

)nw
(
N − nw
N − µw

)N−nw

; If nw > µw, and S = 1; otherwise. (1)

Where nw and µw represent, respectively, the observed and expected number of events
in the space-time region w. We always consider spatial regions which are centred on an
event and are disk shaped, while time regions always consist of intervals of time extend-
ing up to the current time. By taking a Poisson approximation, we estimate the expected
number of events by counting all the events in the spatial region (which occur at any time),
counting all the events in the time region (which occur anywhere in space) and then mul-
tiplying the two, before finally dividing by the total number of events N . The PSTSS as
implemented in the SaTScanTM software [14] was used in this study.

At present, there is no general consensus on the most appropriate strategy for setting the
value ofK and T . In this study, an optimization strategy will be introduced for determining
the optimal value of K and T , which is demonstrated to be effective for short-term crime
hotspot predictions. This constitutes the major contribution of this work.

2.1 Generating the predictive hotspot maps

The generation of a predictive hotspot map from the PSTSS for short-term crime hotspot
prediction is illustrated with Figure 1a. The utility of PSTSS in this respect is based on the
idea that a potential future crime, say D5, will be repeated such that it matches the theory
of RNRV of crime within the spatial region occupied by a cluster D. The theory of RNRV
states that D5 may emerge as a consequence of the direct impacts of any of the previous
crime incidents (i.e., D1, D2, . . . , D4). This idea was employed in two previously published
articles [1,3], and was confirmed to possess strong potential for identifying emerging crime
hotspots.

Figure 1c illustrates the resulting 2D map which is generated by overlaying a system
of square grids (Figure 1b) on top of the space-time cube in Figure 1a. We work in order
from the most extreme cluster (the most different to its expected value) to the least extreme
cluster. For each cluster, we work outwards from the centre of the cluster, marking each
grid cell which intersects the spatial region of the cluster. Once the desired coverage level
has been reached, we stop, even if this is half-way through processing a cluster (Figure
1c). Coverage is determined by the pragmatics of policing, in the sense that only a specific
percentage of an area is likely to be practical to police.

Given that the geographical events in Figure 1 are crime incidents, the shaded grid cells
will represent regions at risk of being imminently victimized, according to the theory of
RNRV. Starting from the most risky grid cell (i.e., the darkest red shade), one can highlight
just the required area of interest for hotspot coverage. For example, in Figure 1c, the rank-
ing process is top-sliced partway through the filling of the brown circle, giving a hotspot
coverage of approximately 20%; calculated as the number of selected grid cells divided
by the total number of grid cells covering the entire area (i.e., 59/294). However, this is a
rough calculation as some of the grid cells are partly covered by the boundary of the area.

It has been determined that the size of the grid cell used for generating the hotspot
map may also impact upon the performance of a hotspot map. This was demonstrated in
Adepeju and Evans [2], in which the impacts of the grid cell size on the performance of the
self-exciting point process (SEPP) hotspot method was investigated. It was found that 50m
by 50m grid system is able to capture the RNRV of a variety of crimes most effectively. As
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Figure 1: The process of modelling a predictive hotspot map using the PSTSS technique (a)
Cylinders, identified by the PSTSS, representing the heightened risk of the events within
the spatial regions occupied by the respective cylinders (b) A system of regular grids with
an area boundary (c). C1, C2,.., C5 are the centroids of the top circular area of the cylinders.
Note: the S values shown are assumed (The diagram is adapted from [1]).

that study was conducted for the same study area, i.e., South Chicago, this study covers,
the same grid cell sizes (i.e., 50m by 50m) are adopted. An investigation of the effects of
different grid cell sizes on the performance of the PSTSS is beyond the scope of the present
study.
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2.2 The hit rate measure as an objective function

The performance evaluation of a hotspot method is usually carried out in relation to an op-
erational objective of policing. Examples of such operational objectives include maximising
the capture rate of future crime [5], and minimising some measures of patrol distances or
response times to problematic locations [7]. The predictive accuracy for future crimes is
the most commonly used measure of hotspot performance. It denotes the effectiveness of a
given hotspot method in identifying the locations that actually end up experiencing crimes.
In other words, it is the proportion of future crimes that is accurately captured within the
region defined as a hotspot by a method. In essence, the evaluation is usually carried out
in retrospect, with the basic assumption that no police activities took place throughout the
evaluation period (which may or may not be true, dependent on the study).

Given the predictive accuracy objective, prior researchers have proposed a number of
metrics that enable different hotspot methods to be assessed and compared. These include
the hit rate, search efficiency ratio (SER), and predictive accuracy index (PAI). The hit rate is the
most commonly used metric due to its simple interpretation and ease of understanding. It
is defined as the percentage of future crime accurately enclosed by a defined hotspot, of a
given spatial coverage [5].

The traditional use of the hit rate (and any other aforementioned metrics) is limited to
simply comparing two or more hotspot methods in order to determine the best amongst
them. In this study, the hit rate is employed as an objective function with regards to the
impacts of the spatial and temporal thresholds (i.e., K and T ) of the PSTSS during predic-
tive crime analysis. The overall goal is to determine the optimal value of K and T which
maximizes the hit rate.

Mathematically, the hit rate measure can be denoted as:

hit ratec =
ac
A

× 100% (2)

Where ac is the actual number of future crimes captured by a hotspot at a given coverage
c, and A, the total number of future crimes that can be captured. The future time window
can be one-day, two-days, one-week or one-month. In terms of short-term crime policing,
one-day or two-days windows are more relevant. By repeating the hit rate measurement
over a total number of prediction time steps; j, the average of the hit rates at c can be
calculated as:

Mean hit ratec =

(∑j
i=1(

ac,i

Ai
× 100)

j

)
% (3)

Equation 3 is referred to as the mean hit rate and can be evaluated at all possible spatial
coverages for the hotspot, i.e., c = 1, 2, 3,..., 100%. Due to the fact that the hotspots generated
by the PSTSS technique rarely cover an extensive spatial area, the coverage is usually a
small fraction of the entire study area. This, however, is barely a drawback as small but
highly risky hotspots are usually the targets of real life operational policing. Hence, a
hotspot coverage of around 15%-20% of an area is usually sufficient. Moreover, the hotspot
coverage will also be part of the features to be examined as the value ofK and T are varied.
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3 A case study of Chicago’s crime prediction

The study area selected for this research is the south side of Chicago, henceforth denoted
as South Chicago. South Chicago measures approximately 12 km and 10 km North-South
and East-West, respectively. The crime data set can be downloaded from the website
www.cityofchicago.org. Three crime types that are potentially different in terms of the
spatial and temporal characteristics are selected. They include: residential burglary (with
3,408 records), assault (with 2,972 records) and theft of motor vehicle (with 2,205 records)
crimes between the period of 1st March 2011 and 8th January 2011; the same data set used
in [1].

It is noted that the geo-coding of these open datasets have changed recently from snap-
ping crime events to individual buildings, to resolving them to the (approximate) centre of
each city block. The latter option, as currently available from the website, is used in this
study.

Prior to any advanced analysis of a spatiotemporal data set, it is necessary to probe the
spatial and/or temporal patterns of the data set, in order to gain a first-hand insight into
the spatial and temporal characteristics that can help to explain subsequent results. This is
often carried out through visual exploration. Thus, visualizations of the spatial distribution
of the three crime types will first be provided in the next subsection. We chose to explore
only the spatial patterns of the point datasets as they are more relevant to this work, and
can provide rough pictures of the potential areas of hotspots. Following that, the parameter
setting for K and T will be discussed and lastly, the details of the analyses.

3.1 Exploration of the spatial patterns of the data sets

The purpose of the exploration here is to gain insight into the spatial patterns of the three
crime data sets through visual inspection. Figure 2 is the spatial point distribution of the
data sets displayed on a grid system of 50m by 50m created over the study area; to also
be used later for modelling the final hotspot map. This grid cell size of 50m x 50m has
previously been used in Mohler et al. [17] and was also confirmed by Adepeju and Evans [2]
to be very effective in capturing the RNRV of crime data sets of South Chicago area.

Figure 2 demonstrates that each crime type has a varied level of crime concentration
across different regions of the South Chicago area. The burglary crime shows the densest
concentration, especially within neighborhoods that are highly residential (south-eastern
parts). The concentration level is lessened towards the northern part of the area. This
is in contrast to both the assault and theft of motor vehicle data sets, which are both fairly
dispersed across the entire area. In comparison to the theft of motor vehicle sets, the assault
crime set demonstrates some clearly identifiable hotspot regions (Figure 2b), whereas the
theft of motor vehicle crimes are spatially more dispersed across the area. For the three
crime data sets, the events’ distribution can be said to reflect the land use pattern of the area.
As an example, the central part of the area, where the University of Chicago is situated,
shows little or no burglary crime; due to a lack of residential buildings. Furthermore, there
are a very limited number of assault crimes within this area. On the other hand, there are
many instances of theft of motor vehicles in this region.

The varied levels of spatial distribution between these data sets are important for this
study in order to examine the performance of the PSTSS in relation to different spatial point
distributions.
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Figure 2: Spatial patterns of the case data sets.

3.2 The values of the maximum spatial and temporal thresholds
(K and T)

The minimum value ofK to be used in this study is 50m. This is selected for two important
reasons: one, to conform to the grid system created (i.e., 50m x 50m, see Section 3). If any
two values ofK are smaller than the size of the grid cells, their results are highly likely to be
very similar. That is due to the fact that many cylinder surfaces will fall completely inside
the cells, and therefore will pick up the same grid cells (see Figure 1). Secondly, it can be
observed from the spatial distribution of the data sets, especially the burglary and assault
ones, that many events are repeated spatially within very close distances. Hence, a spatial
radius distance of 50m will enclose a considerably larger number of events. Finally, the list
of values for K created are K = [50m, 150m, 250m, 500m, 1000m, and 1

2× the size of the
study area]. Half of the size of the study area is included as it constitutes the most commonly
used value of K. It is calculated as: (North-South extent of the study area + East-West
extent of the study area)/4. Based on the size of the South Chicago study area, half of the
size of the study area is estimated to be 5.5km.

The minimum value of T to be used is 14 days (2 weeks) in order allow weekly and
fortnight cyclic patterns to be captured. It is obvious that different regions across the area
may possess different temporal patterns. Therefore, a sufficiently large value of T may be
required in order for each region to be fitted with its appropriate temporal window size.
The final list of values created for T is T = [14 days, 30 day, 60 days, 90 days, and 1

2× the
length of the study period]. As the prediction continues from one day to the next, these
values of T will remain static, except for the 1

2× the length of the study period), which
will vary dynamically as the training data set increases in length, as illustrated in Figure 3.
Based on the description in the next subsection (3.3) the value of half of the length of the study
period for the first and the last prediction step will be 107 days and 156 days, respectively.
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Figure 3: The predict-evaluate routine.

3.3 The training and evaluation process

The temporal range of each crime type is between 1st March 2011 and 8th January 2012.
In this analysis, the first training set is from the 1st March 2011 to 30th September 2011 (7
months). The training refers to the process of generating predictive hotspots as illustrated
in Figure 1 (from the generation of cylinders to the hotspot surface modeling). The first
evaluation (i.e., the calculation of the hit rate for the first hotspot surface) will be based on
the next one-day dataset (i.e., the dataset of 1st October 2011). Next, the second training
data set will combine the immediate previous evaluation dataset with the training data set
to form the new training data set. In essence, the start date of all the training data sets will
be fixed as 1st March 2011, while the end dates will be made to increase by 1 day as the
predict-evaluate routine progresses; for a given value of K being examined (see Figure 3).
This process is repeated for 100 daily consecutive steps. The evaluation data length of 1-day
is chosen to conform to the short-term operational practice for day-to-day crime prediction
by many police agencies. For the purpose of this study, we employed the rsatscan pack-
age in R which allows the SaTScanTM software to be called from R environment, thereby
facilitating automation and repeated analysis [13].

4 Results and discussion

The primary objective of this study is the development of an optimization strategy through
which the impacts of the spatial and temporal thresholds of the PSTSS technique on the
predictive accuracy can be investigated.

A visual representation of a typical PSTSS result is shown in Figure 4 in order to demon-
strate the dynamics of detected clusters. Figure 4 is the output generated for the 100th
predictive step for burglary crime; the training dataset is between the 1st March 2011 and
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7th January 2012, and the anticipated crimes are the next one-day’s worth of crime events
(i.e., for 8th January 2012). The figure is for a spatial and temporal threshold of 150m and
60 days, respectively. The intensity of the cylinder, ranging from deep red to grey; repre-
sents the riskiest and the least risky clusters, respectively. The concentration of the clusters
reflects the spatial distribution of the crime events, as illustrated in Figure 2a. The distribu-
tion of the riskiest clusters is irregular across the area.

Figure 4: A 3D visualization of the burglary clusters from the PSTSS for the 100th predictive
step (i.e., date: 7th January, 2012) with the spatial and temporal thresholds of the scanning
window as 150m and 1

2× the length of the study period, respectively. The intensity of the
cylinders (ranging from grey color to deep red color) represent the risk level within each
region. The base map shows the boundaries of the twelve neighborhoods of the South
Chicago area.

In practice, the use of prediction results is usually based on a 2D map representation.
The 3D representation in Figure 4 can be transformed into a 2D map by overlaying the cho-
sen grid system (i.e., 50m x 50m) on the generated clusters. Figure 5 is the corresponding
2D map of the 3D representation of Figure 4, based on the description in section 2.1. The
2D representation allows for the easy identification of location and makes the evaluation
process much easier to carry out.

In order to demonstrate the uniqueness of the PSTSS hotspots as compared to a conven-
tional hotspot method, the hotspot generated by applying the PKDE method to the last 90
days datasets (i.e., from 09/10/2011 to 07/01/2012) was included in the 2D hotspot repre-
sentation in Figure 5. The sum of asymptotic mean squared error (SAMSE) plug-in bandwidth
in the R package ks [10] was used to generate the kernel density surface. The hotspot
coverage of both the PSTSS and the PKDE are restricted to the top 20% risk values.
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Figure 5: The corresponding 2D cluster map of the 3D results shown in Figure 4. The points
(stars) are the evaluated data sets at the 100th predictive step. The continuous surface is the
top 20% risk locations generated by the PKDE method using the recent 90 days’ datasets.
The clusters by both methods are resolved onto the 50m x 50m grid system in order to
generate hotspot maps.

Figure 5 clearly highlights the major difference between the PSTSS technique, which is
specifically suited for the most recent risk dynamics, and a conventional hotspot method,
such as PKDE, which is meant to capture persistent clusters. From Figure 5, it can be ob-
served that while the highly risky clusters identified by the PSTSS are irregularly dispersed
across the study area, the highly risky regions of PKDE reflect the background concentra-
tion of the dataset, such as is illustrated in the point distribution map in Figure 2a.
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For both methods, the evaluation process is based on the ranking of the intersecting
grid cells with the clusters, with clusters selected in the order of their intensity level. In
the case of the PSTSS, the value of K and T strongly determines the amount of hotspot
coverage that is generated. This is due to the fact that a much larger hotspot coverage is
likely to be generated for large values of K and T (e.g., 1000 m and 90 days, respectively)
compared to small values of K and T (e.g., 50 m and 14 days, respectively). The hotspot
coverage is important to patrol teams, especially when there is limited amount of available
resources.

In the figure, the overlayed points (i.e., the stars) are the anticipated crime events of the
next one day (8th January 2012). It can be seen that, while some events were exclusively
captured by each method (e.g., point 5 and point 4 for the PSTSS and PKDE, respectively),
some were jointly captured by both methods (e.g., points 1, 2, 3, 6, and 7). It is also possible
for both methods to miss a point entirely, such as point 8. In terms of the accuracy, these
indicate a separate 12.5% hit rate by each method and a joint 62.5% hit rate by both meth-
ods. The separate hit rates are largely due to the differences in the spatial distribution of
the hotspots generated by the two methods.

By examining the accuracy of the hotspots at various coverages, a full understanding of
the performance of each method can be gained. In order to simplify the results of different
combinations of K and T , it was decided to examine the accuracies (mean hit rate) at only
five hotspot coverages between 0 to 20%, where applicable. The coverages identified were
1%, 5%, 10%, 15%, and 20%. In the additional analysis to demonstrate the distinctiveness
of PSTSS as compared to the PKDE, all coverages from 1 to 20% were used.

4.1 Predictive accuracies of PSTSS at different spatial and temporal
thresholds

Based on the values of K and T created in Section 3.2, the mean hit rate of the PSTSS
hotspot method is evaluated at different combinations of K and T . The goal is to answer
the question, "at what value of K and/or T is the accuracy highest (or optimized)?" The
mean hit rates at the selected coverages (1%, 5%, 10%, 15%, and 20%, where applicable) are
calculated using Equation 3.

Table 1 shows the results for burglary crime. The first noticeable feature in the table are
the missing values, especially at small values of K and T . The missing values represent a
lack of adequate hotspot coverage needed in order to calculate the hit rate. In other words,
the values of K and T are too small, such that not enough hotspots are generated, meaning
a common base comparison cannot be built. For example, at K = 50 m and 14 days, there
is less than 1% hotspot coverage generated. This shows that when K and T are too small,
the PSTSS may not produce sufficient results. It can be seen however, that as the values
of K and T increase, the hotspot coverage also increases. The K and T appear to have a
similar influence on the amount of hotspot coverage that is generated. A departure from
this trend can be seen when K equals half of the size of the study area, in which less than
20% hotspot coverage is obtained for all values of T . It is expected that at this value of K,
the largest hotspot coverage should be generated. However, the results show the contrary.

An exploration into these patterns revealed that as the value of K increases, relatively
large-sized clusters begin to emerge. Since the non-overlapping filtering option is used in this
study, these clusters began to eliminate any neighboring that might overlap them, eventu-
ally returning a short list of clusters.
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Table 1: The predictive accuracies of the PSTSS at various spatial and temporal thresholds
for burglary crime. The gradient shades of blue highlight the relative accuracy of the cells
assessed by hit rate.

The overall pattern of the mean hit rate, as shown in Table 1, is that K impacts the
accuracy more strongly than T . Moreover, the mean hit rate decreases as K increases from
K = 50 m to K = 1

2× the size of the study area. In other words, the best predictive accuracy
is obtained at K = 50 m and the worst predictive accuracy is obtained at K = 1

2× the size
of the study area. This implies that the PSTSS is able to capture the RNRV pattern more
effectively when scanning windows are more focussed on the small local neighborhood.
Aside from the tendency to generate very low hotspot coverage at small values of K, the
accuracy produced is very impressive. For example, an accuracy produced at a hotspot
coverage of 5% at K = 50 m (and T = 1

2× the length of study period) is 22.4%; which is a
19%, 76%, and 136% improvement over the corresponding accuracies at K = 150 m, K =
750 m and K = 1

2× the size of the study area, respectively.
The temporal threshold, T , on the other hand, did not produce the same impacts on the

mean hit rate. There are no significant increases or decreases in the mean hit rate across all
values of T at each corresponding coverage level. The only exception is the mean hit rate
produced at T = 14 days, which is relatively smaller when compared with all other values
of T , at each corresponding spatial coverage. This suggests that T = 14 days is too small
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to effectively capture all the necessary emerging clusters. However, any other values of T
from 30 days upward, in conjunction with its K counterparts, offers improved accuracy.

Table 2: The predictive accuracies of the PSTSS at various spatial and temporal thresholds
for assault crime. The gradient shades of blue highlight the relative accuracy of the cells, as
assessed by hit rate.

In Table 2, the results of the assault crime are shown. Similar patterns, in terms of the
coverages and mean hit rates in relation to both spatial and temporal thresholds, can be ob-
served. Much like in Table 1, most of the missing results are a result of insufficient clusters
being generated due to small values of K and T . Moreover, the mean hit rate increases as
the value of K decreases. Across all values of T , a similar mean hit rate is obtained at the
same coverage level. In comparison with the results for burglary, a relatively lower mean
hit rate is generated for each corresponding intersection ofK and T . This implies that there
is a higher RNRV pattern in burglary crime compared with assault crime. Although, the
difference in the levels of RNRV patterns in both crime types is apparent from Figure 2,
though burglary crime shows a higher event concentration than assault crime. Burglary
crime has 436 more crimes than assault, as well as a lower level of event dispersion.

Lastly, Table 3 shows the results for theft of motor vehicle crime. The patterns shown
are similar to both the burglary and assault crimes, with the theft of motor vehicle data
showing similar patterns in terms of hotspot coverage levels at different combinations of
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Table 3: The predictive accuracies of the PSTSS at various spatial and temporal thresholds
for theft-of-motor vehicle crime. The gradient shades of blue highlight the relative accuracy
of the cells as assessed by the hit rate.

K and T , and patterns of the mean hit rate as their values, especially in relation to that of
K changes. In comparison with burglary and assault crimes, the general accuracy level of
the theft of motor vehicle crimes is lower. This is attributed to the higher level of spatial
dispersion of the data set compared to burglary or assault crime.

In summary, these results show that the spatial threshold (K) of the scanning window
is a more influential parameter on the accuracy of the PSTSS than the temporal threshold
(T ). Particularly, when K = 50 m, which is equivalent to the adopted grid system cell size,
the accuracy is highest. At larger values of K and T , however, a larger hotspot coverage
level (up to 20%) is possible, which is sufficient for many practical applications; the main
limitation being a relatively lower level of accuracy. In other words, the accuracy may not
be optimal when a large hotspot coverage is generated.

4.2 Validation of the results

The goal of the validation exercise is to examine whether the results obtained in the Ta-
bles 1, 2, and 3 for the three crime types can be generalized for the South Chicago area.
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Therefore, the same analysis was repeated using datasets spanning a different time period,
between 1st January 2015 and 10th November 2015. The same crime types were main-
tained: residential burglary, assault, and theft of motor vehicle. The datasets here appear
to be lower in terms of the number of records by 47%, 24% and 48%, respectively. The same
parameter values forK and T ; that isK = [50m, 150m, 250m, 500m, 1000m, and 1

2× the size
of the study area], and T = [14 days, 30 day, 60 days, 90 days, and 1

2× length of the study
period] are utilized. Moreover, the same predict-evaluate routine strategy was employed, as
described in Figure 3. In this case, the first prediction set is now the datasets between 1st

January 2015 and 2nd August 2015, while the first evaluation set is the dataset of the next
one day, which is the 3rd August 2015. The predict-evaluate routine was then continued for
the next 99 days. The full details of the results of this validation exercise can be found in
the supplementary document of this article.

In summary, the results of the validation exercise support the patterns of results ob-
tained in the Tables 1, 2, and 3. That is, it was found that the three key observations were
true: (1) that the hotspot coverage increases as the values of K and T increase, (2) that
K shows more influence on the mean hit rate than T , with mean hit rate decreasing as K
increases, and (3) that a trade-off exists between the hotspot coverage and the mean hit
rate; except for the hotspot coverage obtained when K = 1

2× the size of the study area.

4.3 Distinctiveness of the predictive capabilities of PSTSS method

In Figure 5, the distinction between the spatial distribution of the hotspots generated in the
first test by both the PSTSS and the PKDE were visualized. The hotspots by the PSTSS are a
set of irregularly distributed circles across the study area, argued to reflect the dynamics of
the most recent events across the area. This, therefore, suggests that the PSTSS is likely to
capture some crimes that are distinct from the crimes that would be captured by a method
such as the PKDE. In order to test this hypothesis, it was decided that a scenario whereby
both the PSTSS and the PKDE generate the same mean hit rate needed to be examined to
determine how the actual crimes captured by both methods are the same or different.

Following the predict-evaluate routine illustrated by Figure 3, we then used the PKDE
to also predict the three crime types, following the predict-evaluate routine, as illustrated
by Figure 3. However, instead of using a fixed start date for all the predictions, a rolling
90-day time window was employed, which ensures that the start date is moved forward
by the predictive step (i.e., one day) as the predictions progress. By using a rolling 90-day
window for the training/prediction, it is assumed that the 90 days historical events are a
good predictor of the next one-day’s worth of crimes.

Figure 6 is the hit rate plot comparing the accuracies of the PSTSS and PKDE for all
coverages between 0 and 20% for burglary and assault crimes, and between 0 and 17% for
theft of motor vehicle crimes. Again, 17% is the maximum hotspot coverage attained by
the PSTSS for the theft of motor vehicle data at the chosen spatial and temporal thresholds.
The results of the PSTSS shown in the plot is based on the results generated for K=150 m
and T = 1

2× the length of study period (see Tables 1, 2, and 3).
It can be observed that both methods produce the same mean hit rate at some specific

coverages in the three plots, such as the hit rates of 32.7% at a 12% coverage for burglary,
the mean hit rate of 9.2% at a 3% coverage for assault, and the mean hit rate of 22.4% at an
8% coverage for theft of motor vehicle. What is not shown in the results however, is the dif-
ference in the actual crimes that are captured by each method due to the differences in the
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Figure 6: Comparison of the accuracies of the PSTSS and PKDE methods.

spatial distribution of the hotspots. It is argued that the revelation of these differences will
not only help to show the distinctiveness of the PSTSS as compared to the PKDE, but may
help in understanding the predictive capabilities of the former, and open up opportunities
for improvement.

Figure 7: Venn diagram showing the accuracy statistics of the PSTSS and PKDE at the 12%
and 8% hotspot coverages for the burglary and theft of motor vehicle crimes, respectively.
The percentage values in brackets represent the mean hit rate at the specified coverage
over the prediction period. The shaded areas indicate the proportion of crimes captured
exclusively by each method.

Figure 7a and Figure 7b are two examples of the accuracy statistics where both the
PSTSS and PKDE generated the same accuracy levels. In these two cases, both methods
are producing the same level of accuracy, which are 32.7% and 22.4% for burglary and
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theft of motor vehicle crimes, respectively. From the Venn diagram, it can be observed that
while both methods captured some of the exact same future crimes (represented by the
intersection area), each individual method is also able to capture a significant proportion
of other future crimes. For example, in Figure 7(b), the proportion of crimes captured by
each method (89 crimes ≡ 14.9%) doubles the proportion that is jointly captured by both
methods. These results support the observation in Figure 5 which suggests that the PSTSS
and KDE may have different capabilities, in terms of the nature of future crimes that they
capture.

The above exploration demonstrates that not only is the PSTSS able to produce a relat-
able level of accuracy, but is also able to predict some distinct crimes that are not captured
by a conventional hotspot method, such as the PKDE. It is argued however, that there is a
need for further investigation of these patterns in order to fully understand the underlying
variables that influence the performance of the PSTSS, as well as the key characteristics of
the crimes captured by the method.

5 Conclusion and future work

The PSTSS, a geographical surveillance technique, was used here as a hotspot method for
short-term crime prediction. First, this study aimed to provide more technical informa-
tion regarding the implementation of the PSTSS hotspot technique, the details of which
are missing in previous studies. The purpose of this study was to determine the optimal
values of the spatial and temporal thresholds by which the predictive accuracy could be
maximized. The significance of this study is that the optimization approach proposed here
is not only usable for crime predictions, but is also applicable to other areas, such as pub-
lic health and epidemiology, where the PSTSS is already widely used. Since the primary
goal of this study was to determine the optimal values of spatial threshold (K) and tem-
poral threshold (T ) that maximize predictive accuracy, a list of the values of K and T were
created, which included small, medium, and large values. This allowed for the testing of
different ideas proposed in previous studies regarding the size of K and T . The choice of
K and T is relevant in crime data analysis as it allows for different sizes of geographical
neighborhood to be properly examined in relation to crime risk.

In order to evaluate the performance of PSTSS as the values K and T change, we con-
sidered a real-life operational uptake of the method. The patrol officers want to be able to
intersect as many crimes as possible with a limited patrol coverage. Therefore, we used
the metric called hit rate (equation 2, [5]) which quantifies the proportion of crimes that
would potentially be intersected if the officers focus on a specified hotspot coverage. In
other words, the use of hit rate as an evaluation criterion provides operational advantage
over the derived likelihood ratio in equation 1 which has a limited operational relevance.

In this study, the area of South Chicago was chosen and three crime types were selected
with potentially differing levels of spatial and temporal characteristics: burglary crime,
assault crime and theft of motor vehicle. A visual exploration of the data sets was first
carried out to investigate the spatial patterns in the data. The objective was to gain fast
insights into these patterns so that the potential cluster and the hotspot patterns based on
the PSTSS technique could be better explained. The resulting spatial exploration revealed
that the spatial aggregation or dispersion of each crime type followed the underlying land
use pattern and may vary significantly from one region to another.
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For the prediction results across the three crime types, two features were prominent.
First, was the pattern of the mean hit rate and second, was the pattern of the hotspot cov-
erage. Incidentally, these constitute two important factors when choosing between various
existing predictive hotspot methods. They are categorized in terms of predictive accuracy
and usability, respectively. In choosing a predictive method, an enforcement agent wants
to ensure that the method is as accurate as possible and further, that the method is usable
in terms of generating sufficient hotspot coverage at all times. There is a strong relation ob-
served between these two factors as the values of K and T are varied. The general pattern
is that where the technique has the tendency to generate highest accuracy, the coverage
level is minimal. These are specific to small values of K and T . For example, at K = 50 m
and T = 30 m, no hotspot is reported. Whereas better coverage is gained as these values are
increased, but this is also accompanied by a decrease in the level of accuracy. Generally, a
sufficient amount of hotspot coverage, such as 15%, is consistent for the crime types at the
K and T values of 150 m and 90 days, respectively.

Interestingly however, the K and T impacts upon the accuracy level very differently.
For instance, K is observed to be the major influence on the accuracy obtained while the
impact of T is very negligible. As K increases, the accuracy level decreases. Therefore,
the worst accuracy level is attained at K equals half of the size of the study area—a value
which has been widely used in many other studies. The only impact of T on the accuracy
is seen at T = 14 days, where it is worst. The accuracy is generally stable from T = 30
days upwards. While previous suggestions regarding the choice of K and T may work
adequately for other applications, the results in this study suggest that those suggestions
are applicable predictive hotspot of short-term crime hotspot prediction. Furthermore, we
included a validation study that showed that we can generalize the results obtained in this
study for the selected crime types for the South Chicago area.

In summary, this study has demonstrated an optimization approach through which the
best values of spatial and temporal threshold of the PSTSS hotspot technique can be de-
termined in order to maximize accuracy of crime prediction. The primary key is to first
determine the objective function to be maximized or minimized and systematically select
values of the parameters to be optimized. While this approach is demonstrated for crime
hotspot prediction, it is argued that it may be applicable to other similar studies in the pub-
lic health and epidemiological domains. Furthermore, while the absolute figures derived
in this study relate to the variations in space and time of Chicago and its crimes, the overall
trends are likely, if not absolutely likely, to be similar across other cities.

It is important to mention that the grid-based version of the PSTSS that uses the Eu-
clidean distances is employed in our study. A network-based variant that is based on street
network distances has been implemented in [20] and used for crime prediction. The im-
plementation of network-based PSTSS is beyond the scope of this study. However, we also
intend to implement the network-based method in the future and compare their perfor-
mances.

Furthermore, it was demonstrated that not only is the PSTSS able to compete with other
conventional hotspot methods in terms of accuracy, it is also able to predict crimes that are
distinct from the ones captured by other conventional methods. This was illustrated by
mapping the accuracy statistics of the actual crimes that are accurately predicted by the
PSTSS but missed by the PKDE, and vice versa. The results suggest that the difference
in the accuracy of both methods reflects the difference in the spatial distribution of their
hotspots, which are in turn indications of the varied responses to the characteristics of the
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datasets. Thus, the examination of such responses in relation to the PSTSS will be the
subject of future investigation.
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A Appendix: Validation study

A.1 Aim

To examine whether the PSTSS (parameter sweep) results shown in the Tables 1, 2, and 3 of
the main manuscript can be generalised for the South Chicago. The following are the three
key patterns observed when the values of the parameters K (the spatial threshold) and T
(the temporal threshold) are varied:

1. The hotspot coverage increases as the values of K and T increase.
2. K shows more influence on the mean hit rate than T. As K increases, the mean hit rate

decreases.
3. A trade-off exists between the hotspot coverage and the mean hit rate; except for the

hotspot coverage obtained when K = 1
2 of the size of the study area.

Goal of the validation study:

To test whether the above three patterns will be observed for another dataset (of the South
Chicago area) covering a different period.

A.2 Data sets, parameter settings, and procedures

Datasets:

In order to carry out this validation study, the South Chicago crime datasets (from
www.data.cityofchicago.org) were downloaded for a different time period. That is, from
1st January 2015 to 10th November 2015, as opposed to the period 1st March 2011 to 8th
January 2012, which was used in the main analysis. It was ensured that both datasets
were of the same length in terms of the number of days. The same crime types were also
maintained, namely: residential burglary, assault, and theft of motor vehicles. The datasets
have 1,821 records, 2,253 records and 1,146 records, respectively. Compared to the ones
used in the main manuscript, the number of records in these datasets are lower by the
percentages of 47%, 24% and 48%, respectively. As a result, the spatial point distributions
appear relatively sparser, as shown in Figure A1 when compared with Figure 2 of the main
manuscript.

Parameter settings:

The same parameter settings used in the main manuscript for both K and T were main-
tained. They are:

• K = [50m, 150m, 250m, 500m, 1000m, and 1
2 of the size of the study area]

• T = [14 days, 30 days, 60 days, 90 days, and 1
2 of length of the study period]

Procedure:

Figure A2 illustrates the predict-evaluate process for the first four steps of our analysis
here (in the same manner as described in section 3.3 of the main manuscript). Thus, our
first prediction map is generated using the datasets between 1st January 2015 and 2nd
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Figure A1: Spatial point distribution of the validation datasets.

August 2015, which is evaluated against the next one-day dataset (i.e. 3rd August 2015).
The predict-evaluate process is continued by incrementing the prediction set by one day
and evaluating against the next one-day dataset until the 10th November 2015. This makes
a total of 100 “predict-evaluate” steps.

Figure A2: Predict-evaluate routine for the validation study.

A.3 Results

Predictive accuracies of PSTSS at different spatial and temporal thresholds:

The results of our analysis were represented in a similar manner as in Tables 1, 2, and 3 of
the main article. That is, we evaluated the mean hit rate at the selected coverages of 1%,
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5%, 10%, 15%, and 20% (where applicable). These are shown in Tables A1, A2, and A3. The
gradient shades of blue colour are also applied to the cell values in order to highlight their
relative magnitude.

Tables A1, A2, and A3 represent the results for burglary crime, assault and theft of
motor vehicle crimes, respectively. These tables will now be discussed in terms of the
patterns of their coverages (missing values) and the predictive accuracies.

Table A1: The predictive accuracies of the PSTSS (for the validation dataset) at various
spatial and temporal thresholds for burglary crime.

Hotspot coverages (and missing values):

Compared with the corresponding Tables 1, 2, and 3 of the main manuscript, Tables A1,
A2, and A3 show similar patterns of hotspot coverages and missing values. For example,
for the values of K=50m and T=14 days, there is lack of adequate hotspot coverage needed
in order to calculate the hit rate. However, as the values of K and T increase, the hotspot
coverages also increase. These patterns are similar to the ones observed in the Tables 1, 2,
and 3 of the main manuscript for burglary, assault and theft of motor crimes, respectively.
Furthermore, the decreasing patterns of the hotspot coverage (i.e. less than 20%) observed
when K equals “half of the size of the study area” are also observed. However, there are
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Table A2: The predictive accuracies of the PSTSS (for the validation dataset) at various
spatial and temporal thresholds for assault crime.

slightly more cells with missing values in the validation results as compared to the main
results. This can be attributed to the relative sparsity of the validation datasets as compared
to that of the main dataset. In conclusion, the patterns of the hotspot coverages or missing
values in this validation exercise correspond with those in the main manuscript.

Patterns of the mean hit rates:

Similar to the pattern of the mean hit rates obtained in Tables 1, 2, and 3 of the main
manuscript, K appears to impact upon the accuracy more strongly than T. The mean hit
rate decreases as K increases from K = 50 m to K = 1

2 of the size of the study area, for almost
all values of T. Thus, the best predictive accuracy is obtained at K=50 m and the worst
predictive accuracy is obtained at K = 1

2 the size of the study area. The lack of many values
at K=50m can be attributed to the relatively sparse nature of the validation datasets. From
the tables A1, A2, and A3, only four cells across all the three tables contain a value, which
are all at the hotspot coverage of 1%. The values are also the best in terms of maximisation.
Since the data sparseness has also appeared to impact on the coverage levels, using a larger
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Table A3: The predictive accuracies of the PSTSS (for the validation dataset) at various
spatial and temporal thresholds for theft-of-motor vehicle crime.

dataset for the prediction may help to improve the number of entries in the K=50m column,
thereby allowing the best values of the mean hit rate to be obtained at K=50m.

Demonstrating similar patterns as in the main manuscript, the temporal threshold, T,
showed little or no impacts on the mean hit rate. There are no significant increases or
decreases in the mean hit rate across all values of T at each corresponding coverage level.

A.4 Conclusion

The goal of this validation study is to examine whether the pattern of the accuracies and the
coverages generated when the parameters K and T of the PSTSS hotspot method are var-
ied during the prediction of South Chicago’s crime datasets can be generalised. A similar
analysis was then performed on datasets of a different study period (between 1st January
2015 and 10th November 2015), experimenting with the same parameter settings for the K
and T.

The results were then examined in relation to three key observations. These are: (1) that
the hotspot coverage increases as the values of K and T increase, (2) that K shows more
influence on the mean hit rate than T, with the mean hit rate decreasing as K increases, and
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(3) that a trade-off exists between the hotspot coverage and the mean hit rate except for the
hotspot coverage obtained when K = 1

2 of the size of the study area.
The results generated in this validation study agree with the above three key observa-

tions from the main manuscript. It is therefore argued that if PSTSS is used to predict the
selected crime types in the South Chicago area, similar patterns of the accuracy (the mean
hit rate) and the hotspot coverages are likely to be obtained.
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