
JOURNAL OF SPATIAL INFORMATION SCIENCE

Number 15 (2017), pp. 89–120 doi:10.5311/JOSIS.2017.15.379

RESEARCH ARTICLE

A cutting-plane method for
contiguity-constrained spatial

aggregation
Johannes Oehrlein and Jan-Henrik Haunert

Institute of Geodesy and Geoinformation, University of Bonn, Germany

Received: September 11, 2016; returned: November 17, 2017; revised: November 26, 2017; accepted: November 28, 2017.

Abstract: Aggregating areas into larger regions is a common problem in spatial planning,
geographic information science, and cartography. The aim can be to group administrative
areal units into electoral districts or sales territories, in which case the problem is known as
districting. In other cases, area aggregation is seen as a generalization or visualization task,
which aims to reveal spatial patterns in geographic data. Despite these different motiva-
tions, the heart of the problem is the same: given a planar partition, one wants to aggregate
several elements of this partition to regions. These often must have or exceed a particular
size, be homogeneous with respect to some attribute, contiguous, and geometrically com-
pact. Even simple problem variants are known to be NP-hard, meaning that there is no
reasonable hope for an efficient exact algorithm. Nevertheless, the problem has been at-
tacked with heuristic and exact methods. In this article we present a new exact method for
area aggregation and compare it with a state-of-the-art method for the same problem. Our
method results in a substantial decrease of the running time and, in particular, allowed
us to solve certain instances that the existing method could not solve within five days.
Both our new method and the existing method use integer linear programming, which
allows existing problem solvers to be applied. Other than the existing method, however,
our method employs a cutting-plane method, which is an advanced constraint-handling
approach. We discuss this approach in detail and present its application to the aggregation
of areas in choropleth maps.

Keywords: area aggregation, districting, spatial unit allocation, optimization, integer linear
programming, cutting-plane method, map generalization, choropleth map
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1 Introduction

Planar subdivisions are frequently used to structure geographic space. In geographic in-
formation systems, they can be used as a basis for data acquisition, storage, analysis, and
visualization. Since different applications require information on different scales, planar
subdivisions are often hierarchical—unemployment rates, for example, can be analyzed on
a county or country level. Often, one aims to compute a higher-level subdivision from a
given one, by grouping areas of similar attribute values. With such an approach, one can
reveal large-scale patterns in the data. In this article, we present a new method for area
aggregation, which we discuss in the context of districting and spatial unit allocation. We
distinguish these problems as follows:

• Districting [9, 36, 38, 62] is the problem of partitioning a set of minimum mapping
units (e.g., postal code zones) to form larger regions or districts (e.g., school zones
or electoral districts). The minimum mapping units (i.e., input areas) are assumed to
form a planar subdivision. The applications of districting range from administrative
to commercial purposes; an overview is provided by Shirabe [61].

• Spatial unit allocation [60, 61] subsumes districting, but it does not necessarily ask to
assign every area to a district. A typical example of spatial unit allocation is to select
a set of areas constituting a single region that is geometrically compact and requires
minimal development costs [1].

• The term area aggregation has been used to refer to the aggregation of areas as a data
abstraction or map generalization problem [34]. Just as districting, area aggregation
requires a planar subdivision as input and asks to group the areas into larger regions.
Districting problems in spatial planning, however, do not necessarily ask to group
areas of similar attribute values, which is an essential criterion for generalization.

It is common to approach districting, spatial unit allocation, and area aggregation by
optimization [7, 20, 29, 33, 45, 49, 62]. The existing approaches are quite similar, since the
different problem variants often share some optimization objectives and constraints. For
example, it is common to require that every output region must have a size or population
within certain bounds and to favor geometrically compact shapes. Compactness is usually
assessed quantitatively, which can be done with different measures [44,47], and considered
as an optimization objective. Additionally, in many problem variants, the output regions
are required to be contiguous [14, 20, 61, 62, 69]:

Definition 1. An area A ⊆ R2 is called contiguous if every two points in A are connected via a
(not necessarily straight) line that is contained in A.

Though the output regions tend to become contiguous when compactness is considered
as an objective, there is generally no guarantee for contiguity without enforcing it. In fact,
if compactness is not the primary objective, contiguity often has to be enforced to produce
somehow reasonable output regions [62]. Therefore, we think that optimizing similarity
(and compactness as a secondary criterion) subject to size constraints and contiguity is a
particularly interesting challenge.

Attribute similarity is an important criterion for aggregation in map generalization, which
means to generate a more abstract and less detailed representation of geographic space
from a given one [8, 59, 68]. The problem occurs if the scale of a cartographic visualiza-
tion has to be reduced, but map generalization does not necessarily assume that the input
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(a) Explanatory maps: input map (left) and out-
put map (right).

(b) The adjacency graphG = (V,E) for the input
map in (a) and the partition of V corresponding
to the output map.

Figure 1: An example of area aggregation (see Haunert and Wolff [34]).

and output representations are visual graphics. Haunert and Wolff [34] have defined the
area aggregation problem in map generalization formally and developed an optimization
method for it, which is based on models for districting by Zoltners and Sinha [70] and
Shirabe [62]. The problem not only requires to group the input areas into larger regions,
but also to assign a value from the attribute domain to each output region; see Figure 1(a).
The aim is to minimize a cost function that penalizes changes of attribute values to dis-
similar values as well as geometrically non-compact output regions, subject to constraints
concerning the size and contiguity of the output regions. The method relies on the defini-
tion of the adjacency graph G = (V,E) whose vertex set V contains a vertex for each input
area and whose edge set E contains an edge {u, v} for each two adjacent areas u, v ∈ V ; see
Figure 1(b). We will use this definition of G throughout this article.

In this article, we revisit the problem defined by Haunert and Wolff [34], but we also
consider the special case that similarity is neglected and compactness is the sole objec-
tive. In this case, the problem is more similar to a classical districting problem that simply
demands geometrically compact and contiguous regions of sizes within certain bounds.
Moreover, while Haunert and Wolff developed and tested their method for the general-
ization of categorical maps, we will use our method to generalize choropleth maps with
a ratio-scaled variable, such as unemployment rates. This has the advantage that we can
directly compute differences between attribute values and do not depend on the definition
of a semantic distance between categories.

We focus on exact optimization methods based on integer linear programming, which is a
common optimization approach for districting [9, 33, 36]. In particular, it is reasonable for
NP-hard problems, for which the existence of an efficient and exact algorithm is extremely
unlikely [28]. In fact, area aggregation falls into the class of NP-hard problems [34], and so
do many problem variants of districting [2, 38, 57].

Defining an integer linear program (ILP) means setting up a linear program (LP) completed
with an integrality constraint. While the LP defines a linear objective function and a set of
linear inequality constraints over a set of variables, the integrality constraint requires that
the variables receive integer values. An ILP is solved optimally if a variable assignment is
found which optimizes the objective function without violating any constraint. Commonly,
the LP corresponding to an ILP without integrality constraints is referred to as the LP re-
laxation of the ILP [52]. An illustrative example for both an LP and an ILP can be found in
Figure 2.
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(a) The red line marks
(x1, x2)-values with equal
objective value.
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program.
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(c) A solution to the integer
linear program. The LP in (b)
is completed with x1, x2 ∈ Z.

Figure 2: A linear program with variables x1 and x2; objective is to maximize 6x1+x2 with respect to
x1 ≥ 0, x2 ≥ 0, 2x2 ≤ 7, 2x1+4x2 ≤ 18 and x1 ≤ 4. The solution space, i.e., all pairs (x1, x2) for which
every given inequality is true, is marked as a blue polytope. The gray arrows in the background
indicate the objective. They are orthogonal to the line of equal objective values in (a).

Whereas efficient algorithms for linear programming exist, integer linear program-
ming is NP-hard [13, 28]. Nevertheless, an approach based on integer linear program-
ming is promising as it allows sophisticated optimization software (e.g., CPLEX [15] and
Gurobi [31]) to be applied. Even though the exact methods for solving ILPs have an ex-
ponential worst-case running time, they can be relatively fast when applied to real-world
instances. Moreover, solutions of an exact method can be used as quality benchmarks to
evaluate the results of (faster) heuristic algorithms. Heuristic methods for districting have
been developed by several researchers [7, 19, 37, 43, 50]. In contrast to exact methods, these
do not guarantee to deliver an optimal solution.

Just as some criteria are shared by many problem variants of districting and spatial unit
allocation, the ILP formulations for these problems often share some elementary compo-
nents. Shirabe [63] has used this fact to integrate mathematical programming techniques
and geographic information systems (GIS), such that a GIS user can assemble a model for
a particular spatial unit allocation problem from a set of elementary model components
and compute a solution to the problem with an ILP solver. Since contiguity is an impor-
tant requirement in many spatial unit allocation problems, several works have focused on
formalizing contiguity as one such elementary model component [61, 62, 69].

Usually, there exist multiple possibilities of encoding a particular problem as an ILP;
choosing among these ILP formulations can highly influence the computation time. In ge-
ographic information (GI) science, it is common to choose a compact ILP formulation, which
means that the size of the ILP is polynomial in the size of the input [24]. For example, in
Section 2.2 we show that, when applying Shirabe’s model [61] to area aggregation without
prescribing the number of output regions, it hasO(n2) variables and constraints (where n is
the number of input areas) and thus a polynomial size. A compact ILP formulation can be
favorable because it permits a full instantiation of the model, that is, a file or data structure
explicitly storing all variables and constraints. After the instantiation of the model, it can
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be handed over to a solver, which computes an optimal solution without requiring any
further interaction. It is therefore common to think of the solver as a black box [46].

Working with compact ILP formulations is relatively convenient. It is also known, how-
ever, that they are sometimes outperformed by non-compact ILP formulations, whose num-
ber of constraints can be exponential in the size of the input [56]. Such a large set of con-
straints forbids a full instantiation of the model. Therefore, one starts the computation by
working with a reduced ILP, which is lacking a set of constraints of the original ILP. A sim-
ple approach is to solve this reduced ILP to optimality and to examine whether the solution
violates constraints of the original ILP. If a violation of a constraint is found, that constraint
is added to the ILP and the solution process is started anew. Drexl and Haase [18] and
Duque et al. [20] use this approach to solve districting problems. In particular, Duque et
al. deal with the p-regions problem, in which, other than in our problem, the number p of
output regions is prescribed.

In this article, we present a more sophisticated approach for area aggregation. We
demonstrate the effectiveness of a cutting-plane method, which generally refers to a method
that adds constraints during optimization without relying on an optimal solution to the
reduced ILP. Violated constraints are found already in a preliminary stage of a solution,
namely in an optimal solution to the LP relaxation of the reduced ILP. Such constraints are
termed cutting planes (or simply cuts) because they cut away parts of the feasible region
of the solution space defined by the current instantiation of the model. The number of
constraints of our ILP formulation for area aggregation is exponential in the number n of
input areas, but initially we instantiate the model with only O(n2) constraints. We gen-
erate constraints ensuring contiguity during optimization, using what is generally termed
a separation algorithm [52]. Though implementing a cutting-plane approach requires some
understanding of how an ILP solver works and certainly more effort than using a compact
ILP formulation and a black-box solver, we consider it practicable, also for researchers in
GI science. This is because modern ILP solvers such as CPLEX or Gurobi offer program-
ming libraries that include interfaces (usually termed callbacks) for intervening in the opti-
mization process. Carvajal et al. [10] have developed a cutting-plane method based on an
efficient separation algorithm for a problem of spatial unit allocation in forest management.
We are not aware of such a method for area aggregation or districting, though.

We used the cutting plane method for contiguity-constrained spatial unit allocation by
Carvajal et al. as a starting point, which, compared to the method of Drexl and Haase [18],
is more recent and can be considered more sophisticated. However, we had to extend the
method substantially for the case of an unknown number of output regions and a flexible
set of centers. More precisely, Carvajal et al. consider two constraint formulations for the
contiguity of a region, namely one that does not rely on the concept of a center of a region
and one that requires a prescribed center to belong to the output region. While in the
first model, contiguity is ensured by considering a set of constraints for each pair of nodes
that are selected for the output region, in the second model, a set of constraints for each
selected node ensures its connectivity to the prescribed center. Conceptually, our approach
is more similar to the second model, as it also relies on the idea of centers. However, we
do not know in advance which of the nodes become centers. Therefore, we use a constraint
formulation that, in fact, is more similar to the first model of Carvajal et al. in the sense that
it uses one set of constraints for each pair of nodes.

Álvarez-Miranda et al. [3] and, recently, Wang et al. [66] have presented theoretical find-
ings on integer programming formulations for the problem of selecting a maximum-weight
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connected subgraph of a given graph. Though their results cannot easily be transferred to
other problems, they can be understood as hints on why a non-compact ILP formulation,
such as the one of Carvajal et al. or ours, can outperform a compact ILP formulation.

To summarize our contribution, we discuss cutting-plane methods as a general
constraint-handling technique that is rather unknown in GI science but well established in
the field of combinatorial optimization [39, 65]. We show that our cutting-plane method
outperforms the districting method of Shirabe [62] that was adapted by Haunert and
Wolff [34] for the aggregation of areas in map generalization. For example, with our
method we were able to solve various instances with 94 departments of France (excluding
overseas department and the island of Corsica) in reasonable time, whereas using Shirabe’s
method produces a result in much longer time or not at all (see Section 5). We specifically
apply this to generate a map that shows a structuring of France into a few (e.g., 10) regions
of similar unemployment rates and thereby highlight the usefulness of the method for the
generalization of choropleth maps. We do note that the applicability of our method is lim-
ited, since we were not able to process instances larger than our instances of France. The
number of areas in these instances of France, however, can be considered typical for choro-
pleth maps. Similar maps can be found, for example, in Bertin’s fundamental textbook on
visualization [6].

In the following, we review an existing ILP formulation for area aggregation (Section 2).
Then, we give an overview of strategies for handling ILPs with large sets of constraints
(Section 3). Subsequently (Section 4), we contribute an ILP applying cutting planes which
extends the ILP formulation from Section 2. Afterwards, we let both models compete in a
series of experiments (Section 5). We apply both ILP formulations on a real-world example
with 94 input areas, discuss the solutions, and compare the running times for different
settings. We finish this article with concluding remarks and ideas for further improvements
(Section 6).

2 A state-of-the-art model

The huge amount of work on spatial unit allocation and districting disallows a compre-
hensive review in this article. Therefore, we refer to the survey by Ricca et al. [58] for an
overview and discuss only the most relevant related work that has inspired our models.
This in particular concerns a general districting model with assignments of areas to centers
(Section 2.1) and a flow-based model to ensure contiguous output regions (Section 2.2). In
Section 2.3, we briefly review the approach of Haunert and Wolff [34] for the aggregation
of areas in map generalization, which is based on the models from Sections 2.1 and 2.2.

2.1 A compact ILP without contiguity

The ILPs that we use in this article differ only with respect to the constraints ensuring
contiguity. If we drop those constraints, we obtain an ILP that has the same structure as the
basic ILP defined by Haunert [33]. This basic ILP follows the approach of Zoltners [70] for
districting, in the sense that in every output region one of the input areas is selected as the
region’s center. To encode this idea, the basic ILP uses a variable xc,v for each pair of areas
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c, v ∈ V , which has the following meaning.

xc,v =

{
1, if area v is assigned to the output region with center c,
0, otherwise.

For c = v, the variable xc,c expresses whether area c is assigned to itself, meaning whether
or not it is selected as a center. Note that with this model we do not prescribe the centers
before computing an optimal assignment. Instead, every area can become a center.

Each variable xc,v is associated with an assignment cost ac,v . The objective function is a
weighted sum of the variables.

min
∑
c∈V

∑
v∈V \{c}

ac,v · xc,v (1)

The aim for compact output regions, for example, can be expressed by minimizing this
objective function with ac,v = w(v) · d(c, v), where w(v) is a weight for area v (reflecting
size or population) and d(c, v) is the Euclidean distance between the centroids of c and
v [34].

To obtain a partition of the set V of areas into regions, we require with the following
constraint that every area is assigned to exactly one center.∑

c∈V
xc,v = 1 for each v ∈ V (2)

Next, we make sure that an area v is assigned to a center c ∈ V only if c is actually selected
as a center.

xc,v ≤ xc,c for each c ∈ V, v ∈ V \ {c} (3)

To impose constraints on the size or population of each output region, we use the weight
w(v) that we defined for Objective (1). The following constraint ensures that every output
region has a weight of at least wmin ∈ R+.∑

v∈V
w(v) · xc,v ≥ wmin · xc,c for each c ∈ V (4)

Similarly, we could define an upper bound on the weights of the regions.
Interpreting both the previous constraints and the results makes sense only if the inte-

grality constraint (Constraint (5)) is taken into account.

xc,v ∈ {0, 1} for each c ∈ V, v ∈ V (5)

A solution satisfying this constraint is termed an integral solution.

2.2 Shirabe’s model for contiguity-constrained spatial unit allocation

The model presented in this section is a straightforward adaption of a model for spatial unit
allocation by Shirabe [61, 62]. It extends the basic ILP from Section 2.1 with a set of con-
tinuous variables and an additional set of constraints to ensure contiguous regions. Since
the additional variables are continuous, Shirabe’s model leads to a mixed integer linear pro-
gram (MILP), which basically can be solved with the same solution techniques as an ILP.
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In contrast to Shirabe, we neither demand a single output region [61] nor a partition of the
input graph into a prescribed number of regions [62] and, thus, have to make small modi-
fications. We denote the resulting MILP as the flow MILP and will use it as a benchmark to
evaluate our new cutting-plane method.

The flow MILP relies on the definition of the directed graph Ḡ = (V, Ē), whose set Ē of
directed edges (or arcs) contains arc (u, v) as well as arc (v, u) for every edge {u, v} ∈ E. It
uses the idea that multiple commodities are transported (or flow) on the arcs of this graph.
By controlling the flow of the commodities with suitable constraints, the contiguity of the
output regions is ensured.

In our adaption of Shirabe’s model, there is one commodity for each potential region
center—and thus for each vertex c ∈ V . We define a variable

yc(u,v) ∈
[
0, |V | − 1

]
for each (u, v) ∈ Ē, c ∈ V \ {u},

which represents the amount of the commodity for center c that flows on arc (u, v). Every
area v that is assigned to a region center c 6= v is a source, that is, it injects one unit of the
commodity for c into the flow network. This unit flow is forced to find a way to the region
center c—the sole sink for the commodity for c—by only passing through areas allocated
to the same center. Guaranteeing these properties of the flow is equivalent to guaranteeing
the contiguity of the resulting regions. This is done with the following constraints:∑

(u,v)∈Ē

yc(u,v) ≤
(
|V | − 1

)
· xc,u for each c ∈ V, u ∈ V \ {c} (6)

∑
(u,v)∈Ē

yc(u,v) −
∑

(v,u)∈Ē

yc(v,u) = xc,u for each c ∈ V, u ∈ V \ {c} (7)

If xc,u = 0, i.e., u is not assigned to center c, Constraint (6) prohibits any outflow of the
commodity for c from u; Constraint (7) forces the inflow and the outflow of this commodity
at u to be equal (and thus prohibits any inflow as well). If xc,u = 1, i.e., u is assigned to
center c, Constraint (7) ensures that u is a source contributing one unit of the commodity for
c to the flow network; Constraint (6) is relaxed by setting its right-hand side to a sufficiently
large number. Only the center c of a region can be a sink of the commodity for c, since
Constraints (6) and (7) are not set up for the case c = u.

The flow MILP consists of Objective (1) as well as Constraints (2)–(7). Since G is planar,
the flow MILP has O(n2) variables and O(n2) constraints, where n = |V | is the number of
input areas.

2.3 Area aggregation in map generalization

Area aggregation is an important sub-problem of map generalization, which (among oth-
ers) also involves line simplification [17], selection [48], and displacement [4, 59]. While
some approaches exist to treat all or multiple sub-problems of map generalization in a com-
prehensive way [27, 32, 67], research is also ongoing to improve the algorithmic solutions
for each sub-problem.

Area aggregation can be driven by minimal graphic dimensions for a target scale, but
in this article we consider it in the context of statistical generalization [8], which aims at a less
detailed and non-graphical model to permit spatial analysis on a higher level of abstraction.
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In particular, we consider the grouping of administrative regions with unemployment rates
as an example, in which the aim is to reveal large spatial patterns of unemployment. Our
aim is a high homogeneity with respect to the unemployment rate in each output region,
thus we consider similarity of attributes as an important criterion for grouping. Addition-
ally, we consider size and compactness in our model.

We do note that grouping areas based on unemployment rates is related to the delin-
eation of labor market areas, which, however, are usually defined based on travel-to-work
patterns rather than on attribute similarity [11, 25, 55, 64]. Our work is also related to the
modifiable areal unit problem (MAUP) [54], which states that the delineation of districts is
a source of statistical bias. With our aim for homogeneous output regions we try to keep
this bias low. Obviously, aggregation not only reveals large spatial patterns but also sup-
presses fine-grained and possibly sensitive information. Therefore, we also see a relevance
of area aggregation for privacy protection [41].

According to the definition of area aggregation by Haunert and Wolff [34], the areas
(both in the input and in the output) have one attribute. For each input area v ∈ V , the
attribute value is denoted by γv . The problem definition requires that in each output region
one of the contained input areas c is selected as a center, which dictates the attribute value of
that output region as γc. This means that no “new” attribute values arise. Furthermore, the
basic ILP (with additional constraints ensuring contiguity) suffices for area aggregation—
if the assignment costs ac,v are appropriately set. Haunert and Wolff [34] define ac,v to
express two criteria.

First, since xc,v = 1 implies that area v changes its attribute value (or color) from γv to
γc and an objective is to keep such changes small, a cost frecolor is charged that depends on
the distance from γv to γc. This distance is generally defined with a function δ : Γ2 → R≥0,
where Γ is the set of all attribute values. It is chosen to reflect the dissimilarity of the attribute
values, which implies that by minimizing frecolor the objective for grouping similar areas is
addressed. The cost for color change is defined as

frecolor =
∑
c∈V

∑
v∈V

w(v) · δ(γc, γv) · xc,v . (8)

Second, the objective for geometrically compact output regions is generally modeled
with a cost fnon-compact. In this article, we define

fnon-compact =
∑
c∈V

∑
v∈V

w(v) · d(c, v) · xc,v , (9)

where d : V 2 → R≥0 is the Euclidean distance between the centroids of the areas in V .
The overall objective is to minimize

f = α · fnon-compact + (1− α) · frecolor, (10)

where α ∈ [0, 1] is a parameter that weights the two criteria. Accordingly, we use Objec-
tive (1) with assignment costs

ac,v = w(v) ·
(
α · d(c, v) + (1− α) · δ(γc, γv)

)
. (11)

Haunert and Wolff [34] assumed that Γ is a discrete set of land cover classes and that the
distance δ measures the semantic dissimilarity of classes. In our example, however, we are
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given areas with unemployment rates and thus a quantitative attribute. More specifically,
Γ = [0, 1] is the set of real numbers between 0 and 1. We simply define the distance

δ(γ1, γ2) = |γ2 − γ1| for γ1, γ2 ∈ Γ . (12)

With this definition, the requirement that each region contains an area that does not change
its attribute value has no influence on the optimal objective value. In particular, if all areas
have the same weight, the cost frecolor would be minimized by selecting the median of all
attribute values in a region.

A problem that is similar to our problem variant of area aggregation with a quantitative
attribute is the aggregation of 3D building models based on their heights. Guercke et al. [30]
have approached this problem by integer linear programming, using a model that is similar
to the model of Haunert and Wolff [34].

3 Handling ILPs with large sets of constraints

The cutting-plane method that we will present in this article is based on an ILP consist-
ing of Objective (1), Constraints (2)–(5), and an exponential number of constraints that
ensure contiguity, which we term contiguity constraints. Such a large set of constraints is
only reasonable with special constraint-handling techniques, which we sketch in this sec-
tion. Generally, the strategy is to first disregard some constraints of the original model and
to consider a reduced model that contains only few constraints ensuring some very basic
properties of a solution. In our example, we disregard the contiguity constraints.

The most simple approach following this strategy is to first compute an optimal solution
to the reduced model. Then, it is often easy to check whether the solution is also a solution
to the original model. For example, non-contiguous regions can be easily and efficiently
detected using a breadth-first search [13]. Generally, if the solution satisfies all constraints
of the original model, one is done. Else, one can augment the model with exactly those con-
straints that were found to be violated—and solve it again. This process is repeated until an
optimal solution to the current model is found and asserted to satisfy all constraints of the
original model. Drexl and Haase [18] and Duque [20], for example, use this approach in or-
der to solve the problem of sales force deployment and the p-regions problem, respectively.
An advantage of this approach is that the ILP solver can still be thought of and used as a
black box. That is, after each augmentation of the model with constraints, the ILP solver
can be applied with default settings and without any intervention. Also, the approach can
be more efficient than an approach with a complete instantiation of the model. On the other
hand, solving the model to optimality after each augmentation step can be quite inefficient.

A better approach is to repeatedly augment the model but to avoid computing an op-
timal solution after each augmentation step. Instead, one can halt some ILP solvers as
soon as they find a new incumbent solution, that is, an integral solution that satisfies all
constraints of the current model and that is better than any such solution found so far.
As in the most simple approach, this incumbent solution needs to be inspected using an
algorithm that is specifically designed and implemented for that purpose, e.g., in the case
of area aggregation, an algorithm that checks whether the regions corresponding to the
solution are contiguous. If a constraint violation (e.g., a non-contiguous region) is found,
a new constraint is added and the optimization process is resumed—rather than repeated
from scratch. This kind of intervention (i.e., halting the solver, inspecting the incumbent
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straints.

x2

x1

(d) The LP after all
the necessary separa-
tion steps (here: two).

Figure 3: A geometric interpretation of an LP with two variables x1, x2 ∈ R (constraints presented as
blue lines, objective function presented as gray arrows) and its solution (red). While (a) depicts the
complete LP and an optimal solution, (b) to (d) show the advantages of using a separation algorithm:
Starting with only a subset of constraints (b) we extend the LP with constraints which are violated
by the solution to the current LP (c) as long as we can find any (see Figure 4). When the separation
algorithm cannot find any violations (d) the current solution is valid and optimal with respect to the
complete LP of the original model.

return s

Select a subset C ′ ⊆ C
of all of the problem’s
constraints

Compute an optimal
solution to the LP
with constraint set C ′

Does the solution s to
the LP satisfy all of the
constraints of C as well?

Enhance C ′ by a vio-
lated constraint in C

yesno

Figure 4: The way from Figure 3(b) to (d) as a diagram; the separation algorithm leads to a point of
diversion depending on whether a violated constraint exists.

solution, augmenting the model, and resuming the optimization process) can be done via
interfaces specified in the programming libraries of solvers like CPLEX and Gurobi. As the
most simple iterative approach, this approach finally yields a globally optimal solution.
Examples for the application of this method in computational cartography are presented
by Haunert and Wolff [35] and Nöllenburg and Wolff [53].

Finally, the approach that we apply in this article generates relevant constraints without
relying on incumbent (i.e., integral) solutions to the ILP. This is advantageous because find-
ing an integral solution can be just as hard as finding an optimal solution to a model and,
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therefore, may take very long. Instead of inspecting incumbent solutions for constraint vi-
olation, we inspect optimal solutions of LP relaxations—in the LP relaxation corresponding
to a model the variables are allowed to take fractional values, which makes the problem
less complex, even efficiently solvable [40]. Most ILP solvers begin with solving the LP
relaxation of the given model to find a lower bound (or upper bound in case of a maxi-
mization problem) of the objective function, usually by applying a variant of the simplex
algorithm [16], which is fast in practice. Furthermore, during the optimization process,
most solvers also solve LP relaxations for sub-instances (i.e., branch-and-bound nodes) in
which the values of some variables are fixed. In any case, we test whether a solution of
an LP relaxation of the current model satisfies all constraints of the original model. More
precisely, we use a separation algorithm, that is, an algorithm that either asserts that all con-
straints are satisfied or yields a violated constraint, with which we then augment the model
(see Figures 3 and 4). For the Traveling Salesperson Problem1, for example, this approach
outperforms other ILP approaches [56]. In comparison to the previous approach based on
incumbent solutions, one avoids an extensive exploration of the branch-and-bound tree.
On the other hand, designing a separation algorithm can be a non-trivial task. If the con-
straints are of a certain type, the separation step can be done efficiently (in particular, with-
out explicitly testing all inequalities), for example by computing a maximum flow in an
appropriately defined graph. Carvajal et al. [10] deal with forest planning models using
this method. In Section 4 we exemplify this approach in detail for area aggregation.

4 A new method for area aggregation using cutting planes

In Section 2 we have modeled all aspects of the problem that we aim to solve. That is, we
consider Objective (1) with the assignment costs in Equation (11) and the definition of the
distance δ in Equation (12). We minimize this objective subject to Constraints (2)–(5) and
constraints ensuring contiguity. Obviously, we could ensure contiguity with Constraints (6)
and (7), but in this section we introduce an alternative formulation that we use with our
cutting-plane method. An advantage of this formulation is that we get along with the
binary variables xc,v and without the additional variables yc(u,v).

Instead of setting up the model completely, we let the solver begin with the basic ILP
from Section 2.1. When the solution to the LP relaxation in a branch-and-bound node is
found, we intervene and check whether some of the not yet added contiguity constraints
presented in the following are violated and add at least one of them in that eventuality.

With the following constraints we ensure contiguity. They are inspired by the work
of Carvajal et al. [10] and Drexl and Haase [18], where they were set up in order to solve
different problems: forest planning and sales territory alignment. The algorithm of Carvajal
et al. solves a problem asking for the selection of a single output region and is therefore not
directly applicable to the area aggregation problem. Drexl and Haase deal with districting
but add violated constraints based not on the solution to the LP relaxation in a branch-
and-bound node but to an optimal solution to the current model. Afterwards, they run
experiments to calculate only upper and lower bounds for larger instances, but no optimal
solutions. We do not only present these constraints in combination but also emphasize the

1Dealing with the Traveling Salesperson Problem means determining a shortest path visiting every city of a
given set of cities. It serves as a basis for various common GI science problems like one of its extensions, the
vehicle routing problem [5, 12, 42].
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c

v

c

v

c

v

Figure 5: An example of an adjacency graph G with various (c, v)-separators (red): Every path from
v to c contains at least one vertex of the respective separator.

advantages of cutting-plane methods. Furthermore, we contribute an ILP formulation for
area aggregation.

4.1 Constraints completing the ILP formulation

In the following, we present two different kinds of constraints. While combining the basic
ILP from Section 2.1 with the constraints presented in Section 4.1.1 is necessary and suffi-
cient for area aggregation, the constraints in Section 4.1.2 work in a supporting way. These
supportive constraints mainly enforce the minimum-weight constraints (Constraint (4)) in
a more determined manner.

4.1.1 Contiguity constraints based on vertex separators

Let c, v ∈ V be two arbitrary areas. In the following we consider c the center of a region and
the possibility of assigning v to this region, which is represented with the binary variable
xc,v .

Furthermore, let Sc,v ⊆ 2V be the set of all (c, v)-separators in G, where a set S ⊆
V \ {c, v} is called a (c, v)-separator if every path from c to v in G contains at least one
vertex in S (see Figure 5). If v is allocated to the region with center c, then—for the sake of
contiguity—for each (c, v)-separator S ∈ Sc,v at least one area of S has to be allocated to
this region as well. In linear terms this condition is expressed as follows:∑

u∈S
xc,u ≥ xc,v for each S ∈ Sc,v, c, v ∈ V. (13)

If c = v or {c, v} ∈ E, that is, areas c and v are identical or adjacent, the set of (c, v)-
separators Sc,v is empty. Consequently, there is no constraint described in Formula (13) for
these cases. In general, the number of separators is in O(2|V |).

The basic model (see Section 2.1) with the constraints presented here is already fully
operative: all output regions are contiguous if and only if none of the constraints based
on vertex separators is violated. To see why, we only consider the case where the right-
hand side equals 1, since otherwise the inequalities from Constraint (13) are always true.
Suppose an arbitrary region containing a center c and another area v is contiguous. This
means a path p between c and v exists in G that consists only of vertices belonging to
the same region. Since each separator S ∈ Sc,v contains at least one vertex of any path
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from c to v, it also contains a vertex of path p and thus an area of the region in question.
Consequently, the inequalities from Constraint (13) are fulfilled. Now, let us assume that
a region R ⊆ V is not contiguous, i.e., R consists of at least two connected components.
Thus, it is possible to take a look at the region’s center c and an area v contained in another
connected component than c. Then the set V \ R is a (c, v)-separator and the inequality
from Constraint (13) is violated for S = V \R ∈ Sc,v .

4.1.2 Supportive constraints inspired by the minimum-weight requirement

If a separator S ∈ Sc,v has certain properties, we define another constraint: since S is a
(c, v)-separator, the set V \ S consists of at least two connected components—one of which
contains c and one of which contains v. Let C(S, c) be the connected component in V \ S
containing c. If the total weight of C(S, c), that is

∑
u∈C(S,c) w(u), does not exceed the

minimum weight wmin demanded for a resulting region, then every region with center c
has to contain at least one area of the separator S. Or stated as a linear inequality:∑

u∈S
xc,u ≥ xc,c for each S ∈ Sc,v with

∑
u∈C(S,c)

w(u) < wmin, c, v ∈ V (14)

Again, the inequality is always fulfilled for xc,c = 0. Only if xc,c = 1 (i.e., c is declared a
center) the allocation of at least one area in the respective separator is required.

Constraint (14) alone does not suffice to achieve contiguity. When combining it with
Constraint (13), however, it acts in a supportive manner. To see why, we contrast the con-
tiguity constraint (Constraint (13)) with the supportive constraint (Constraint (14)). We
observe that they only differ with respect to their right-hand sides, which are xc,v and
xc,c, respectively. Constraint (3) ensures xc,c ≥ xc,v and, thus, Constraint (14) is at least
as restrictive as Constraint (13) for any v ∈ V . That is, every solution to an LP relaxation
considering Constraints (3) and (14) fulfills Constraint (13). However, the solution to an LP
relaxation considering Constraints (3) and (13) cannot give this guarantee with respect to
Constraint (14). Transferring this observation to Figure 3, we note that a more restrictive
constraint cuts away more parts of the solution polytope (marked as a blue region in the
figures). This results in a better performance of solvers based on branch and bound [52].

4.2 Adding the constraints

As described in Section 3, the ILP is built up step by step. In this section, we describe a
separation algorithm, that is, an algorithm that allows us to find at least one violated conti-
guity constraint if there exists any; see Section 4.2.1. Then, we show how such a contiguity
constraint may also provide a supportive constraint; see Section 4.2.2. Afterward, in Sec-
tion 4.2.3, we discuss how to speed up the computation by restricting the search for violated
constraints, and we argue why this does not harm the correctness. Finally, in Section 4.2.4,
we present another method that may find additional violated constraints without much
computational overhead.

A pseudocode formulation of these algorithms can be found in Section Appendix B.

4.2.1 Finding violated contiguity constraints using minimum-weight vertex separators

If we assume that the integrality constraints xc,v ∈ {0, 1} are satisfied for all variables (see
Figure 6(a)), finding a violation of Constraint (13) is straightforward. For example, for a
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(a) With integral xc,u-values, it
is easy to find a vertex sepa-
rator, for which the contiguity
constraint is violated.

0 + 0 =
∑
u∈S

xc,u < xc,v = 1

c v

0.4
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0.70.8

0.2
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(b) For fractional xc,u-values, a
violation of a contiguity con-
straint is harder to find. A viola-
tion exists, for example, for the
depicted separator.
0.3+0.2 =

∑
u∈S

xc,u < xc,v = 0.7

c v
0.7

0.4

0.5 0.7

0.2

0.5

(c) The contiguity constraint
is satisfied for the minimum-
weight (c, v)-separator. Thus,
no contiguity constraint is vio-
lated for any (c, v)-separator.
0.5+0.2 =

∑
u∈S

xc,u ≥ xc,v = 0.5

Figure 6: In this example with fixed c, v ∈ V , we examine the search for a (c, v)-separator, for which
the contiguity constraint (Constraint (13)) is violated. For a vertex u ∈ V , we consider the value
xc,u from the solution of an LP relaxation as its vertex weight (blue). It depends on these values
whether a violation of a contiguity constraint exists. Separators which are interesting in this context
are indicated in red.

fixed center c, we could consider the subgraph ofG induced by all nodes v with xc,v = 1. If c
and a node v lie in different connected components of this graph, a violation of a contiguity
constraint exists. However, since we want to find constraints in a preliminary stage of the
solution (i.e., in the solution of the LP relaxation of the ILP), we need to deal with variables
of fractional values (see Figure 6(b)).

To find contiguity constraints that are violated by the solution to the current LP re-
laxation, we proceed as follows (see also Algorithm 1 in Section Appendix B): taking a
closer look at Constraint (13), we observe that separators providing a smaller sum on the
constraint’s left-hand side are more likely to implicate a violation of the corresponding con-
straint, since the right-hand side does not depend on the choice of the separator. For every
potential center c, we therefore take for every v ∈ V the value xc,v of the current solution as
the weight of v in G and focus on minimum-weight (c, v)-separators afterward—in Section
Appendix A we describe how to compute minimum-weight vertex separators by using
minimum edge cut algorithms [13,21,26]. The reason why this is effective is the following:
if the inequality from Constraint (13) is violated for an arbitrary (c, v)-separator S, it is also
violated for a minimum-weight (c, v)-separator S∗ since xc,c >

∑
u∈S xc,u ≥

∑
u∈S∗ xc,u

holds in that case. Thus, for specific c, v ∈ V , looking at a minimum-weight (c, v)-separator
guarantees to notice a violation if there is one (see Figure 6(c)). In particular, computing
and examining minimum-weight (c, v)-separators for every potential center c ∈ V and
every v ∈ V \ {c} solves the separation problem.

4.2.2 Finding supportive constraints

For each vertex separator computed with the algorithm from Section 4.2.1 we proceed as
follows to find a supportive constraint. The vertex separator splits V into at least two
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c

v

(a)

c

v

(b)

Figure 7: The (c, v)-separator (red) divides the graph into at least two connected components. The
component of c (dashed, blue) in (b) is more likely to offer a Constraint (14) than the one in (a).

connected components in G. If one of these components forms a region with less than
the minimum weight, the corresponding separator offers Constraint (14) for any potential
center in that component. Therefore, we check for every area in the connected component
of c whether the respective Constraint (14) is violated for this area as a center. If that is
the case, we add the violated constraint to the model. This means we compute a separator
principally for a certain center c but also use it to set up constraints independent from c.

The algorithm from Section 4.2.1 yields a minimum-weight (c, v)-separator. Such a sep-
arator is not unique. Among the minimum-weight (c, v)-separators we prefer those which
are closer to c (see Figure 7). The reason why we prefer separators closer to c is Con-
straint (14): That way, it is more likely to detect violations of Constraint (14) and conse-
quently more likely to add a supportive constraint. In order to find the minimum-weight
(c, v)-separator closest to c we use the fact that our algorithm is based on the search for
a minimum edge cut. Here, common algorithms follow the same scheme and return the
minimum edge cut closest to a certain vertex [13].

4.2.3 Restricting the search for violated constraints

A straightforward implementation of the algorithm described in Section 4.2.1 implicates
the computation of a quadratic number of vertex separators every time an LP relaxation
is solved optimally. In order to reduce this number, we make restrictions described in the
following.

We read the value of a variable xc,v for arbitrary c, v ∈ V as the tendency of v to be
allocated to c. With regard to Constraint (2), we see that, for a fixed v ∈ V , the average
value of the variables xc,v is 1

|V | . Therefore, we interpret xc,v ≥ 1
|V | as an indicator that

allocating v to c (or, in the case v = c, declaring v a center) is—for the moment—considered
reasonable. Conversely, a value less than 1

|V | implicates that an allocation to a different
center is preferable. Hence, we impose the following restrictions on the method presented
in Sections 4.2.1 and 4.2.2:

• We compute minimum-weight (c, v)-separators only for areas v with xc,v ≥ 1
|V | .

• We take centers c with xc,c <
1
|V | only into consideration if no violation is detected

for more probable centers.
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• We add a supportive constraint (Constraint (14)) only for areas v in the connected
component (not fulfilling the minimum-size requirement) of the examined center for
which xv,v ≥ 1

|V | holds.

Although we fail to notice violations of the inequality from Constraint (13) for areas
with xc,v < 1

|V | and, thus, to solve the separation problem properly, this fact does not pose
a risk to finding a contiguous solution. As we handle these violations in a branch-and-
bound node, the solver goes on branching and bounding in the node’s sub-instances. It
continues until either an integral solution is found or the problem becomes infeasible. If a
sub-instance is infeasible, there is no need to worry about whether the number of added
constraints is too small. In case of an integral solution, there are two possible scenarios for
each potential region with center c: either xc,c = 0 and with it xc,v ≤ xc,c = 0 for every
v ∈ V (see Constraint (3)), i.e., the region is not considered in the solution and therefore in
no need of a validation of contiguity. Or xc,c = 1 ≥ 1

|V | , which results in a verification of
the region’s contiguity and implies that we find violations if existing.

4.2.4 Finding violated contiguity constraints using connected components

For the following method of finding a useful vertex separator (see also Algorithm 2 in
Section Appendix B), we interpret for every probable center c (i.e., xc,c ≥ 1

|V | ) the values
of the variables xc,v for v ∈ V as described in Section 4.2.3, only stricter: if xc,v ≥ 1

|V | , we
consider v allocated to the region with center c, otherwise we do not. Therefore, we take a
look at

V ′ =
{
v ∈ V

∣∣∣xc,v ≥ 1
|V |

}
and to the subgraph of G induced by V ′. In this subgraph we are able to detect connected
components of the areas tending to be allocated to c. For every connected component
U ⊆ V ′ ⊆ V with c /∈ U , we examine the set of adjacent areas in V , that is

BU :=
{
w ∈ V \ U

∣∣ ∃u∈U : {u,w} ∈ E
}
, (15)

and take it as a vertex separator. Subsequently, we add a Constraint (13) for every u ∈ U
(and c). This way we have a good chance of finding additional violated contiguity con-
straints without much computational overhead.

5 Results and discussion

For a series of experiments we used a computer with a 3.2 GHz Intel Core i5-4570 Processor
and 16 GB RAM. Our program is written in Java and besides the Gurobi [31] interface for
Java, we use in particular the library JGraphT [51] for building the adjacency graph and
performing operations on it (see also Section Appendix B). The data for the experiments is
provided by the European statistical service (Eurostat, [23]) and the European Observation
Network for Territorial Development and Cohesion (ESPON, [22]). This data is gathered
with regard to the NUTS (Nomenclature des unités territoriales statistiques) subdivision
of the European Union. As an example, we examine the unemployment rate [22] for the
NUTS-3 subdivision of continental France (see Figure 8(b)) which means processing a sub-
division of 94 departments. In contrast to Haunert and Wolff’s original work [33, 34] we
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77156 2579208

(a) Population (department weight).

5.5% 15.0%

(b) Unemployment rate (attribute value; origin
of data: EUROSTAT, ESPON estimations, 2011).

Figure 8: input data for statistical aggregation of France’s departments

take the population of a department [23] (see Figure 8(a)) instead of its area as the depart-
ment’s weight. This means we compare the methods described in Sections 2.2 and 4 on the
third level administrative subdivision of a major European country. We do not only com-
pare the effects of α, the factor weighting the cost functions frecolor and fnon-compact in the
objective function, on the result and the computation time, but also examine the influence
of the choice of wmin, the minimum weight required of a region in the output.

As attribute domain, Γ = [0, 1] is given and we write γv ∈ Γ for the attribute value,
i.e., unemployment rate, of an area v ∈ V . According to Section 2.3, we define δ(γ1, γ2) =
|γ1 − γ2| for arbitrary γ1, γ2 ∈ Γ as the cost for recoloring. The cost for non-compactness is
defined through the Euclidean distance d between centroids. Observing Equations (1) and
(8)–(10) we get the following overall cost function as the objective function:∑

c∈V

∑
v∈V \{c}

w(v) ·
(
α · d(c, v) + (1− α) · δ(γc, γv)

)
· xc,v (16)

As for the weighting factor α, we make the following choice: with α ∈ {0, 1} we want to
present the extreme solutions. For α = 1 we receive compact regions of a certain weight
ignoring any statistical similarities between the areas. For α = 0 we see a solution with
least recoloring costs but consisting of regions of mostly unconventional shape. According
to the experiments that we present in this section, a weighting factor of α = 2 · 10−5 still
yields almost optimally compact shapes and α = 1.25·10−6 almost optimally homogeneous
regions. Therefore, we particularly tested our method for α = 0 and α = 1 as well as for
1.25 · 10−6 ≤ α ≤ 2 · 10−5.
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In our experiments, we set wmin to 5 % and 10 % respectively of the total population
of continental France. With this setting, we end up with a partitioning into a number of
larger regions which is approximately at the same scale as the actual NUTS-2 subdivision
of continental France, which consists of 12 regions.

Figure 9 α tcut tflow
tflow/tcut #out

(a) 1 30 s 497 s 16.6 18
(b) 2.0 · 10−5 21 s 502 s 23.9 18
(c) 5.0 · 10−6 50 s 14 229 s ≈ 4.0 h 284.6 17
(d) 2.5 · 10−6 100 s > 5 d > 4 320.0 16
(e) 1.25 · 10−6 451 s > 5 d > 957.9 16
(f) 0 18 413 s ≈ 5.1 h > 5 d > 23.4 14

(1) Running times for the experiments with minimum weight wmin = 1
20

∑
v∈V w(v).

Figure 10 α tcut tflow
tflow/tcut #out

(a) 1 20 s 35 s 1.8 9
(b) 2.0 · 10−5 59 s 267 s 4.5 9
(c) 5.0 · 10−6 194 s 14 464 s ≈ 4.0 h 74.6 9
(d) 2.5 · 10−6 495 s > 5 d > 872.7 9
(e) 1.25 · 10−6 86 981 s ≈ 1 d > 5 d > 4.9 9
(f) 0 > 5 d > 5 d — 9 2

(2) Running times for the experiments with minimum weight wmin = 1
10

∑
v∈V w(v).

Tables (1) and (2): These tables provide information about the running times in seconds (s), hours (h)
or days (d) for the corresponding experiments with different minimum weights (see Equation (4)).
Experiments were aborted after five days if no optimal solution was found; this is indicated with “> 5
d.” The first column refers to the visual presentation of the result. The second column denotes the
α-value used in this experiment (see Equation (16)). In the column marked with tcut one can find the
running times of our approach described in Section 4, in the column marked with tflow the times of
the state-of-the-art approach of Section 2. The fifth column compares those values by giving the ratio
tflow/tcut. Finally, the column marked with #out gives additional information about the structure of
the result by providing the number of resulting regions.

Considering the results in Tables (1) and (2), it comes to attention that our cutting-plane
approach outperforms the flow model in every instance. In our experiments, the flow MILP
is competitive only in the situation where wmin is 10 % of the total population and α = 1.
In every other case, our ILP is many times faster, as the fifth column of each table indicates.
With α declining, i.e., focusing on reducing frecolor, the advantages of the cutting-plane
formulation become clearer since the problem becomes harder to solve. This is caused by
the fact that focusing on compactness supports contiguity: a compact region is more likely
to be contiguous than a region of areas with similar attributes.

In particular, the three last rows of each table deserve our special attention. For both
settings of wmin, the solver is not able to return a result using the flow model for α ≤
2.5 · 10−6. Leaving the instance with α = 0, wmin = 1

10

∑
v∈V w(v) out of account, each of

2Since the calculations are incomplete for both the flow model and the cutting-plane approach, the result
presented here is the best one found with no guarantee of optimality. It is the result of five days of calculation
with the cutting-plane approach. The optimality gap is 6.89%, i.e., the resulting cost of an optimal solution is at
least 1− 0.0689 = 0.9311 times the cost of the solution presented here. (Using the flow MILP, the remaining gap
is 51.4%.)
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Aveyron

(a) α = 1 (b) α = 2.0 · 10−5

(c) α = 5.0 · 10−6 (d) α = 2.5 · 10−6

(e) α = 1.25 · 10−6 (f) α = 0

Figure 9: Output with wmin equaling 5% of France’s total population; thick lines mark aggregated
regions colored according to the unemployment rate of their center (◦). The arrows in Figures (e) and
(f) point to extremely narrow parts of contiguous regions.
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(a) α = 1 (b) α = 2.0 · 10−5

(c) α = 5.0 · 10−6 (d) α = 2.5 · 10−6 (same result as (e))

(e) α = 1.25 · 10−6 (same result as (d)) (f) α = 0 (interim result2)

Figure 10: Output with wmin equaling 10% of France’s total population; thick lines mark aggregated
regions colored according to the unemployment rate of their center (◦).
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these instances is solvable with the cutting-plane algorithm. For three of these instances,
the solver returns an optimal solution within a few minutes.

Considering the output in detail, we find that the noticeable higher unemployment rates
in northern and southern France (former Nord-Pas-de-Calais and on the Mediterranean
coast) are identified and aggregated in every example where similarity is considered (i.e.,
α 6= 1). In general, for most of the departments, the resulting color (unemployment rate) is
close to the input. Nevertheless, one also notices larger differences between input and out-
put coloring for various departments. This phenomenon occurs especially for α = 1, but
also in other cases. For α 6= 1, however, this only causes minor changes since these depart-
ments have a comparatively small population (see Figure 8(a)) and consequently contribute
only little cost. Take, for example, Aveyron, a department in south-central France (see Fig-
ure 9(a)) with one of the lowest unemployment rates of all departments. For both α = 1
and α = 0 it has undergone seemingly expensive recoloring. Considering the objective,
this makes sense as less than 0.5 % of France’s total population lives in Aveyron.

Another negative aspect is the fact that parts of some of the resulting regions are very
narrow. Understandably, this occurs especially for α = 0, where resulting regions reach
diagonally from one border to another, e.g., in both Figures 9(f) and 10(f) the region con-
taining the department in the very south-west (Pyrénées-Atlantiques). For α 6= 0 this phe-
nomenon occurs less distinctly. A problem that arises independent of α is bottlenecks. A
bottleneck is a very narrow part of a region connecting two larger parts. In order to resolve
this, one has to manipulate the input data or rather its interpretation. Building the adja-
cency graph G, we consider departments adjacent as soon as they share a boundary. When
dealing with a map of France’s departments, we have to handle several pairs of depart-
ments sharing a borderline of less than 10 km. Without adjusting the adjacency rule, we see
results with constellations such as in Figures 9(e) and 9(f), where a region bordering the
Mediterranean Sea (marked with an arrow in the south-east) even seems to consist of two
components. Here, the departments Var and Vaucluse share less than 1 km of borderline.

Figure 11 gives us additional arguments to disqualify α = 0 or α = 1 as reasonable
weight factors. Let us take a look at the situation for wmin equaling 5 % of the total popula-
tion (i.e., Figure 11(a)). As α = 0 (here: (f)) results in an optimal solution with respect to the
cost for recoloring, these costs are higher for every other value of α. But for α = 1.25 · 10−6

(here: (e)), recoloring is only approximately 1.2 % more expensive (47.06 % versus 47.65 %
of the maximum value) whereas the cost for non-compactness decreases by 32.4 %. The
situation is the same for the other value of wmin and similar with regard to the cost for non-
compactness. Also, this argument supports our choice for α ≈ 10−5. In this range, we get
near-optimal results for either cost without unreasonable expenses for the other.

6 Conclusion

Our method allows us to solve instances as large as France’s third level NUTS division in
a reasonable amount of time, which the existing method based on a flow model does not.
With our cutting-plane approach, we are able to partition about a hundred areas into nine
to eighteen regions multiple times faster than with the compact flow model. In our exper-
iments, the problem becomes harder the fewer output regions are asked for, as Tables (1)
and (2) show. With increasing the number of areas of the input, our algorithm reaches its
limits as well. Applying our model to Germany’s third level division—with 402 districts
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France’s total population, see Table (1) and Fig-
ure 9; absolute maximum values are 8.0 · 1012
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Figure 11: Costs for non-compactness and recoloring as a percentage of the maximum occurring cost;
as 100% of costs for non-compactness we take those arising while minimizing the cost for recoloring
(i.e., α = 0) and vice versa.

the largest in the European Union—the solver returns no optimal solution within five days.
This problem occurs even for α = 1, i.e., focusing on compactness only.

Nevertheless, our approach offers unprecedented opportunities. Five of the instances
from our experiments are set up too hard to be solved with the flow MILP within five
days but are solvable with the cutting-plane algorithm within one day. In particular, the
solver is capable to find an optimal solution for each of these settings which consider not
only recoloring but also compactness, i.e., α 6= 0. Moreover, three of these four cases are
solved within only a few minutes. Due to these positive results, we argue that we have
increased the range of problem instances that can be solved with proof of optimality such
that it includes use cases that are of relevance. In particular, we consider it promising to use
our method to produce benchmark solutions and to compare such solutions with solutions
of efficient heuristic methods. Such a comparison may help to decide whether or not a
heuristic is a justifiable choice. Therefore, we think that both exact and heuristic methods
for area aggregation can complement each other and will play their roles in the future.

In future work, we plan to support the ILP solver by calling heuristics during branching
or in order to generate an initial solution. Furthermore, we consider it promising to apply
our cutting-plane approach to the p-region problem [20], in which the number of output
regions is prescribed.
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Appendix A Minimum-weight vertex separators

For defining the constraints in Section 4.1.1 we use minimum-weight vertex separators.
In this section we explain what these separators are and how to calculate them by using
established minimum edge cut algorithms [13, 21, 26].
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(a) A quadrilateral as an explanatory graph G =
(V,E). Here, we are looking for a minimum-
weight (c, v)-separator.
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in Ã induced by E are red.

G̃
w(u)

w(z)

m m

m

m
c̃1

ṽ0

ãu

ãz

(c) Blue arcs represent a maximum flow with
corresponding weights from c̃1 (�) to ṽ0 (�);
since m is a sufficiently large constant, the max-
imum flow is w(u) + w(z), limited by arcs in-
duced by V (here: the dotted arcs ãu, ãz with
weights w(u), w(z) respectively).

u v

z

e

G

c

(d) Figure (c) finally provides a minimum-
weight edge cut {ãu, ãz}. Transferring this result
back to G, we get the wanted minimum-weight
(c, v)-separator {u, z}.

Figure 12: Computing a minimum-weight vertex separator.

Let G = (V,E) be an undirected graph and w : V → R≥0 a vertex-weight function. For
c, v ∈ V , a minimum-weight (c, v)-separator S ⊆ V \ {c, v} is a set of vertices with the follow-
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ing property: Every path in G from c to v contains at least one vertex in S. Furthermore,
any set with this property has at least the same weight as S with respect to w.

If c = v or {c, v} ∈ E then there exists no such vertex and S = ∅. In every other case we
make use of minimum (c, v)-cut algorithms and apply them to a modified graph G̃.

In order to use edge cut algorithms we need to transform G into a directed graph G̃ =

(Ṽ , Ã) (see Figure 12(a) and (b)). Since only vertex weights are given and we want to use
edge weights, we have to introduce two vertices ṽ0, ṽ1 ∈ Ṽ and an arc ãv = (ṽ0, ṽ1) ∈ Ã
for every v ∈ V with w̃(ãv) = w(v), where w̃ : Ã → R≥0 is an edge-weight function.
Furthermore, we replace every edge e ∈ E with two arcs ãe0, ãe1 ∈ Ã going in opposite
directions to maintain the structure of the graph. With defining w̃(ã0) = w̃(ã1) = m ∈ R
with m >

∑
v∈V w(v) we complete the transformation.

Let ÃV =
{
ãv
∣∣ v ∈ V } be the set of all arcs induced by V (in the example, ÃV =

{ãc, ãu, ãv, ãz}, see Figure 12(b)). As, in general, ÃV \ {ãc, ãv} is a (c, v)-cut with weight∑
a∈ÃV \{ãu,ãv} w̃(a) less than m = w̃(ã) for every ã ∈ Ã \ ÃV we do not only know a

cut without any arcs induced by E, but also that any minimum-weight cut is a subset of
ÃV \ {ãu, ãv}. Hence we are able to conclude from the computed minimum-weight cut to
a minimum-weight vertex separator.

Appendix B Algorithms

In the following section we present the algorithms corresponding to the methods of adding
constraints to the model which are described in Section 4.2. For both Algorithms 1 and 2,
we use—in addition to the adjacency graph G = (V,E)—a matrix of ILP variables indexed
in the same manner as throughout the article (x[c][v] corresponds to xc,v). As already men-
tioned, we only consider x-values exceeding a certain bound; in Section 4.2.3 we choose 1

|V |
which we use in these algorithms.

With Algorithm 1 we are able to find cuts using minimum vertex separators as de-
scribed in Sections 4.2.1 and 4.2.2. Some parts of the algorithm need explanatory remarks:

• To find a vertex separator in G, we use a VertexSeparatorGenerator. That is an object of
the class MinSourceSinkCut of the library JGraphT [51] applied to an auxiliary graph
as described in Section Appendix A.

• The boolean variable hasAdditionalCuts guarantees a sufficiently neat solution of the
separation problem. The search for vertex separators (and consequently additional
constraints) continues until a cut is added to the current LP relaxation, but at least as
long as the value of the x-variable of the center is greater or equal 1

|V | . hasAdditional-
Cuts is the output of Algorithm 1 and this output is an argument of Algorithm 2. In
Algorithm 2, this boolean variable is used for the same purpose.

• The methods getValue() and getValues() return values of the solution of the LP re-
laxation to the currently examined branch-and-bound node; getValue() is applied
to one variable and returns its value whereas getValues() is applied to an array of
variables concerning a center c (i.e., x[c]) and, thus, actually returns a set of values
{xc,v ∈ [0; 1] | v ∈ V }.
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Algorithm 1: addVertexSeparatorCuts
Data: Adjacency graph G = (V,E), V sorted such that v ≥ w ⇔ xv,v ≥ xw,w for

v, w ∈ V , Variable[ ][ ] x
Result: Cuts added by means of vertex separators (see Sections 4.2.1 and 4.2.2)

1 Gen← V ertexSeparatorGenerator(G);
2 c← V.first();
3 hasAdditionalCuts← false;
4 while x[c][c].getV alue() ≥ 1

V.size() ∨ ¬hasAdditionalCuts do
5 Gen.setWeights(V, x[c].getV alues());

6 U ←
{
v ∈ V

∣∣∣ v 6= c ∧ (v, c) /∈ E ∧ xc,v ≥ 1
V.size()

}
;

7 foreach u ∈ U do
8 S ← Gen.getV ertexSeparator(c, u);
9 if

∑
v∈S x[c][v].getV alue() < x[c][u].getV alue() then

10 addCut(“
∑

v∈S x[c][v] ≥ x[c][u]”);
11 hasAdditionalCuts← true;

12 C ← connectivityInspector
(
(V \ S,E

∣∣
V \S)

)
.getConnectedComponent

(
c
)
;

13 if
∑

v∈C w(v) < wmin then
14 foreach v ∈ C with x[v][v].getV alue() ≥ 1

V.size() do
15 if

∑
u∈S x[v][u].getV alue() < x[v][v].getV alue() then

16 addCut(“
∑

i∈S x[v][u] ≥ x[v][v]”);
17 hasAdditionalCuts← true;

18 c = V.next();

19 return hasAdditionalCuts;
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• Given G = (V,E) and a subset U ⊆ V , we define E
∣∣
U

as the set of edges restricted to
the set of vertices U , that is

E
∣∣
U

:=
{
{u, v} ∈ E

∣∣∣u, v ∈ U} = E ∩ 2U .

Consequently, (U,E
∣∣
U

) describes the subgraph of G induced by the vertex set U . In
order to find the connected component containing c in this subgraph, we use an object
of the class ConnectivityInspector which also is part of the library JGraphT.

Algorithm 2: addConnectedComponentsCuts
Data: Adjacency graph G = (V,E), V sorted such that v ≥ w ⇔ xv,v ≥ xw,w for

v, w ∈ V , Variable[ ][ ] x, hasAdditionalCuts
Result: Cuts added based on connected components (see Section 4.2.4)

1 c← V.first();
2 while x[c][c].getV alue() ≥ 1

V.size() ∨ ¬hasAdditionalCuts do

3 V ′ ←
{
v ∈ V

∣∣∣x[c][v] ≥ 1
V.size()

}
;

4 G′ ← (V ′, E
∣∣
V ′

);
5 foreach ConnectedComponent U in G′ with c /∈ U do
6 BU ←

{
w ∈ V \ U

∣∣∃u∈U : {u,w} ∈ E
}

;
7 foreach i ∈ C do
8 if

∑
j∈BU

x[c][j].getV alue() < x[c][i].getV alue() then
9 addCut(“

∑
j∈BU

x[c][j] ≥ x[c][i]”);
10 hasAdditionalCuts← true;

Algorithm 2 allows us to add cuts using connected components of the adjacency graph
as explained in Section 4.2.4. All the methods and sets (except BU ⊆ V ) described here are
known from Algorithm 1. A further description of BU , the set of vertices in V adjacent to
U ⊆ V , can be found in Section 4.2.4.
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