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Abstract: In many geo-spatial applications, freehand sketch maps are considered as an
intuitive way to collect user-generated spatial information. The task of automatically map-
ping information from such hand-drawn sketch maps to geo-referenced maps is known as
the alignment task. Researchers have proposed various qualitative representations to cap-
ture distorted and generalized spatial information in sketch maps. However, thus far the
effectiveness of these representations has not been evaluated in the context of an alignment
task. This paper empirically evaluates a set of cognitively plausible representations for
alignment using real sketch maps collected from two different study areas with the corre-
sponding geo-referenced maps. Firstly, the representations are evaluated in a single-aspect
alignment approach by demonstrating the alignment of maps for each individual sketch
aspect. Secondly, representations are evaluated across multiple sketch aspects using more
than one representation in the alignment task. The evaluations demonstrated the suitabil-
ity of the chosen representation for aligning user-generated content with geo-referenced
maps in a real-world scenario.

Keywords: qualitative constraint networks; sketch map; qualitative representation; quali-
tative alignment

1 Introduction

Sketching as a natural mode of human communication provides a simple and intuitive
way to express spatial knowledge. In many geo-spatial applications [11, 13, 31, 42], free-
hand sketches are considered as an intuitive user interaction modality for the acquisition
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and dissemination of spatial information. One practical example is the use of sketch maps
in community mapping1 where practitioners have argued that sketching is the most acces-
sible form of mapping to use in mapping exercises as opposed to using cartographic maps
or satellite imagery [33]. However, allowing sketch maps to be an interaction modality
available to users requires the alignment of the drawn objects with an underlying spatial
dataset. The alignment of spatial objects involves identifying correspondences between
objects in the two input maps. For this task, various researchers [11, 13, 31, 38, 42] have
investigated the use of qualitative spatial relations, for example, using distance categories
such as adjacent, near, and far as opposed to numerical distances.

However, the information presented in sketch maps is based on human-perception
rather than numerical measurements. Therefore, represented information is schematized,
distorted, and generalized [19, 40]. These cognitive distortions are neither random nor
solely due to a lack of detailed information [37, 38]. Throughout a series of experiments
[43–45] Wang et al. identify a set of invariant sketch aspects preserved in freehand sketches.
These aspects address the topology, orientation, and ordering information between drawn
objects. In the area of qualitative spatial reasoning (QSR) a multitude of representational
systems (spatial calculi) has been developed to formalize different aspects of space and
time [16].

The modeling of these representations in geographic information systems (GISs) and
spatial databases has been a central topic of research since the early 90s. In a number of
sketch-based applications [11, 13, 31, 42], different qualitative representations have been
used to represent spatial configurations in terms of qualitative relations such as the 9-
intersection model [12] and the region connection calculus (RCC8) [10]. However, these
applications did not explicitly take into account the influences of human spatial cognition
and the effects of cognitive distortions [19, 40] in the representation and alignment of spa-
tial objects. Furthermore, none of these representations thus far have been evaluated in the
context of an alignment task between sketch maps and geo-referenced maps in a real-world
scenario. In our previous studies [22,23,25,38], we investigate different representations for
the alignment of sketch maps. As a result of our initial investigation, we outlined some of
the plausible representations derived from an empirical study on maps in the SketchMapia
sketch database2. However, the evaluation of these representations was only done manually
by comparing the qualitative relations between spatial objects across the input maps “by
hand.”

In the SketchMapia framework [38] Schwering et al. propose a comprehensive pro-
cedure that utilizes these existing representations for the automatic spatial alignment of
sketch maps to geo-referenced maps. The research presented in this article is motivated
by the SketchMapia framework. We aim at identifying a set of plausible representations
to formalize the invariant sketch aspects found in sketch maps. These representations
must take into account the impact of cognitive distortions and capture the salient quali-
tative distinctions preserved in sketch maps. The identified representations are used for
the alignment of spatial objects in the input maps. This work builds upon the previous
work on sketch aspects [43–45] and the authors’ initial investigations on qualitative repre-
sentations [22, 23, 25, 38].

In this work, we empirically investigate different representations in the context of qual-
itative alignment of drawn objects with corresponding objects in geo-referenced maps. We

1http://namati.org/
2http://www.uni-muenster.de/Geoinformatics/en/sketchmapia/sketch-map-database.php
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experimentally collected sketch maps from two different locations in Münster, Germany.
The corresponding geo-referenced maps are generated from the Open Street Map3 (OSM).
The evaluations of different representations are carried out in two different phases. Firstly,
the representations are evaluated by demonstrating the alignment of maps using one sketch
aspect at a time, where the qualitative constraint networks (QCNs) are extracted from the
geometric representations of spatial objects in the input maps using the individual rep-
resentation. Afterwards, the extracted QCNs are used as inputs to the matching algo-
rithm [6]. The representations with a sufficiently high accuracy of matches are considered
plausible for the alignment task. Secondly, the representations are further evaluated across
multiple sketch aspects, where QCNs from more than one representation are used for the
alignment of spatial objects. The overall evaluations demonstrated the plausibility of the
chosen representations for aligning the user-generated content.

The remainder of this paper is structured as follows: In Section 2 we discuss relevant
related work comparing to our own contribution. In Section 3 we motivate our work fur-
ther by outlining how our proposed representations fit into the SketchMapia framework.
In Section 4 we present our methodology for the selection of plausible representations. In
Section 5 we detail the evaluations of representations on real world datasets within the
single-aspect alignment approach. Section 6 covers the approaches used to align spatial
objects across multiple sketch aspects. In Section 7 we discuss the empirical findings of the
evaluations. In Section 8 we present the conclusions of this study with an outlook on future
work.

2 Related work

During the last two decades, several approaches attempt to capture spatial configurations
between drawn objects qualitatively. Egenhofer et al. [11] propose spatial-query-by-sketch,
a sketch-based GIS user interface that focuses on specifying spatial relations by drawing
them. Haarslev and Wesse [18] propose the visual query system—VISCO. It offers a sketch-
based query language for defining approximate spatial constellations of the objects. VISCO
integrates geometric and topological querying with deductive spatial reasoning. Forbus et
al. [13] develop a sketch understanding system—CogSketch. It uses both qualitative topo-
logical reasoning and quantitative information to construct spatial configurations between
depicted objects.

All above cited approaches have a shared motivation in line with our research aims and
use similar methods of representing the spatial configurations in terms of qualitative re-
lations. The approaches use different representations (i.e., coarse and detailed topological
relations, metric refinements, cardinal direction relations, etc.) to formalize the spatial con-
figurations. However, the critical departure with our research is: firstly, the approaches did
not take into account the influences of human spatial cognition and the effects of cognitive
distortions [19,40] in the representation and alignment of spatial objects. Secondly, none of
these representations have been evaluated in the context of aligning the spatial objects in
sketch maps in a real-world scenario.

For the qualitative alignment of geo-/non-georeferenced datasets, three different meth-
ods have been proposed. Wallgrün et al. [42] propose an approach interpretation tree search
algorithm for qualitative alignment of spatial objects. The approach allows a user to draw a

3http://www.openstreetmap.org
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sketch map that is used to query the stored geo-referenced map. They only tested the per-
formance of their matching algorithm by focusing on the alignment of synthetic sketched
scenarios of streets connected at junctions using the coarse dipole relation algebra (DRA)
[42] and cardinal directions [14]. Importantly, they did not test the alignment of real sketch
maps of street networks drawn by human subjects, and they did not take into account the
alignment of other drawn objects such as landmarks, which are common in real sketch
maps and highly pertinent to sketch map interpretation.

In [7], Chipofya et al. propose an automatic approach for the alignment of spatial objects
based on a reimplementation of some of the ideas in [42] using the tabu search metaheuristic
[17]. They test the matching performance of the algorithm using six simple sketch maps,
matching each sketch map to itself. They only use the relations in RCC and DRA7 for the
alignment of drawn objects. They did not test the alignment of spatial objects from real
freehand sketches with geo-referenced maps using these representations.

In [6] Chipofya et al. propose an alternate approach for the qualitative alignment of
sketch and geo-referenced maps using the local compatibility matrices (LCM) and tabu search
metaheuristic [17]. The approach addresses the issue of memory costs affecting the algo-
rithm in [42] by using a fixed amount of information about the search process. The per-
formance evaluation of their matching algorithm is done using synthetic data and a small
dataset of sketch and geo-referenced maps. Their evaluation only compares runtime per-
formance with the algorithm proposed in [42]. As the LCM method achieved significantly
higher performance than other algorithms, we use the LCM method to evaluate different
representations for the alignment of spatial objects in a real-world context. The outcome of
our research, and the key distinction with previous studies is that we identify a set of cog-
nitively plausible representations which account for the effects of cognitive distortions and
bring both sketch and geo-referenced maps on the same qualitative level, thus ensuring a
high accuracy of matches with automatic matching methods.

3 Qualitative alignment of maps in SketchMapia

SketchMapia aims at relaxing technical constraints to create, assemble, and disseminate
spatial information from freehand sketches provided by a layperson. The system interprets
input sketches (Figure 1: Step 1), computes qualitative descriptions of the spatial configu-
rations in both the sketch and the geo-referenced maps (Figure 1: Step 2), and determines
potential alignments based on the qualitative descriptions (Figure 1: Step 3). This paper ad-
dresses the qualitative representational aspect (Figure 1: Step 2) of the input maps. Figure
1 gives an overview of the architecture and workflow of the SketchMapia framework.

One of the high impact application areas of the framework is in the land administra-
tion domain. The approach of qualitative representations and alignment of the input maps
in this system have been adopted in the ongoing EU funded project its4land4. The project
aims at implementing the tool for land administration, which enables rapid documentation
of land parcels and associated tenures within communities using community mapping ap-
proaches. The members of communities will collaboratively create sketch maps of their
area and land indicating necessary details. The created maps will be aligned with the un-
derlying land administration systems qualitatively. In this way, additional information in
sketch maps such as information about ownership, rights, and depicted boundaries of land

4http://its4land.com
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parcels can be transferred into the data repository.

3.1 Invariant sketch aspects

In a series of experiments [43–45] Wang et al. identify a set of invariant sketch aspects, pre-
served in sketch maps. The identified sketch aspects are as follows (a) the topology of street
segments in a street network, (b) orientation of street segments in a street network, (c) ori-
entation of adjacent landmarks with respect to street segments, (d) linear ordering of land-
marks and street segments along a route, (e) ordering of landmarks and street segments
around reference junctions, (f) topology of landmarks and city-blocks, and (g) topology
of city-blocks. These aspects are correlated with human spatial thinking and consistently
show high accuracy (greater than 90%) in the alignment of sketched scenes and their coun-
terparts from geo-referenced maps [45]. In the following sections, we denoted these sketch
aspects as sketch aspects (a), (b), (c), (d), (e), (f), and (g).

3.2 Qualitative representations

The qualitative representations in the area of QSR focus on different aspects of space and
time such as the qualitative representations for topological reasoning [9, 34], directions
[14, 35], relative position of points [29, 30, 35] and others, each of which introduces a fi-
nite number of basic spatial relations. These representations have been used to process
spatial information on a qualitative level [11, 13, 31, 42].

The formalization of the aforementioned invariant sketch aspects requires a set of plau-
sible representations (Figure 1: Step 2). These representations must capture the spatial
configurations preserved in sketch maps. In [22,23,25,38], we investigate and outline some
of the representations, derived from an empirical study on sketch maps. Some examples of
qualitative representations investigated include the well-known RCC family of represen-
tations [9,34], representations of the dipole relation algebra (DRA) [30,42], Allen’s interval
algebra (IA) [1], point algebra (PA) [41], cyclic interval algebra (CIA) [32], cyclic point
algebra (CPA) [2], and the oriented point relation algebra (OPRAm) [29].

In our previous study, we evaluated these representations manually by comparing the
qualitative relations [22, 23, 25, 38]. For each representation, the qualitative relations be-
tween drawn objects are extracted and compared with the relations between correspond-
ing objects in the geo-referenced maps. The representations were considered suitable if
they provided the same relations between spatial objects across the input maps. However,
coarse representations always give a high accuracy of consistent relations across the inputs
maps under this definition of accuracy, as they capture qualitative distinctions at an even
more abstract level. Thus, in this case the use of very coarse qualitative relations may lead
to the inconsistent alignment of spatial objects by not providing sufficient distinguishing
power between potential object matches.

3.3 Qualitative alignment

In the qualitative alignment task, spatial scenes can be described by means of a given qual-
itative representation via a QCN. It is a process that involves finding correspondences be-
tween two input maps by matching QCNs. The QCN of a given map is a graph containing
nodes and edges labeled by the respective qualitative relations. If B is a set of base rela-
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Figure 1: Shows the structure of the framework (source: [38]). The workflow of the system
comprises 3 main steps extracting elements from sketch map (step 1), qualitative represen-
tation of the input maps (step 2), and qualitative alignment of maps (step 3).
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tions for a given qualitative representation then the graph (N,R), where N represents a set
of objects and R : N ∗N → 2B is a function specifying the spatial relations holding between
a pair of objects.

For the alignment of spatial objects, we use the QCN matching algorithm LCM [6].
Using the algorithm, different representations are evaluated to justify their efficacy in the
alignment of spatial objects. In the alignment, a sample match can be thought of as a func-
tion (m) taking nodes in the input QCNs to nodes in the target QCNs. The algorithm starts
off with the empty match where all input nodes are assigned to a special null node that is
added to the set of target nodes. In each iteration, it makes a choice to extend the current
sample match by reassigning a null-matched input node to an available target node. For
non-empty matches, the algorithm may also choose to reassign an input node to the null
node. The two choices above are based on the heuristics computation and a tabu search
metaheuristic.

For the alignment of drawn objects, we are considering a two-step process (see Figure
1: Step 3): the alignment within single sketch aspect (single-aspect alignment) (Step 3a), and
the alignment across multiple sketch aspects (multi-aspect alignment) (Step 3b).

Single-aspect alignment Within the single-aspect alignment, we derive the QCNs using
one sketch aspect at a time (via a single representation). The derived QCNs represent a
particular aspect of the space. The algorithm takes these QCNs as input for the alignment
of spatial objects. In the single-aspect alignment, inconsistent matches are discovered only
at the end of the alignment process. It ignores interdependencies of constraints across mul-
tiple sketch aspects. As a result, it loses the opportunity to constrain the solutions in the
search space at an early stage of the alignment process.

Multiple-aspect alignment In the multiple-aspect alignment, we consider the constraints
from multiple sketch aspects. We extract the QCNs from the input maps using more than
one sketch aspect (e.g., topology, orientation, and ordering information conjointly). The
algorithm uses these multiple constraints as input in the alignment task. During the align-
ment, the constraints of one sketch aspect may propose one or several sketch objects as
candidate solutions. Given these candidate solutions, the algorithm checks the consistency
in further sketch aspects by observing whether these sketch objects are also align using
the other constraints as well. These multiple constraints help to improve the alignment by
optimizing the selection of candidate solutions that agree on the constraints from multiple
sketch aspects and are mutually consistent. The consistency across multiple aspects avoids
the inconsistent matches.

In some cases, we check the consistency for the alignment of the same sketch object type.
For example, when a set of street segments are aligned to another set of street segments
using one sketch aspect (e.g., topological relations), we check whether these street segments
are also aligned using another sketch aspect (e.g., orientation relations). In other cases,
we check the consistency for the alignment with respect to different sketch object types,
for instance, when a set of street segments are aligned using one sketch aspect, we check
whether the corresponding city-blocks that are formed by those street segments are also
aligned in other sketch aspects.

In both single and multi-aspect alignments, we assumed that all the seven sketch as-
pects exert equal influence in the alignment. The cognitive study on the interdependencies
of sketch aspects and dominance of one aspect over others is still subject to future work. For
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the multi-aspect alignment, we propose a hierarchical approach. In Section 6, we demon-
strate the alignment using the hierarchical approach, where QCNs from multiple sketch
aspects are employed on the spatial objects one after another. In this approach, some con-
straints propose the alignment of some objects, while other constraints refine and ensure
the correct alignment.

4 Methodology and experimental set-up

For the evaluations of different representations, we experimentally collected sketch maps.
We define criteria for the selection of plausible representations based on former studies on
sketch maps [43–45]. The defined criteria help to scrutinize the plausible representations
for the alignment task. The identified representations are employed on each sketch aspect
((a) to (g)) (mentioned in Section 3.1). For this task, the qualitative qualifiers [20, 21] are
used which extracts spatial configurations as QCNs from geometric representations of the
input maps.

4.1 Data collection

We have conducted experiments and collected the survey sketch maps (26 in total) from
two different locations of areas about 1.04km2 and 2.10km2 in Münster, Germany (respec-
tively denoted as Location-I and Location-II). Location-I and Location-II are, respectively,
urban and suburban areas with a variety of natural and human-made features. Both study
areas are homogeneous in that they have similar land use and land cover features and
structures of street networks (typical European non-grid like streets).

All the sketch maps are generated by different participants from the University of Mün-
ster (excluding authors and colleagues). The participants were familiar with the locations
by frequent visits by foot or vehicle. During the experiment, participants were asked to
produce sketch maps of predefined locations with as much detail as possible from mem-
ory. Out of the 26 collected sketch maps, six maps have been excluded as they contain
very little spatial information. We used 20 sketch maps with sufficient spatial information.
The 10 sketch maps from Location-I contain 190 street segments, 128 landmarks, and 90
city-blocks in total, while the remaining 10 sketch maps from Location-II contain 242 street
segments, 306 landmarks, and 106 city-blocks.

For the geo-referenced maps, we used the dataset from OSM. The raw dataset of OSM
contains redundant spatial data. As a pre-processing step, we removed or fixed incorrect
data. For example, the multiple parallel line segments are snapped together to generate
one street segment with start and end-points. By joining these street segments, we form
the street-network. In the OSM dataset of an area, you may find several candidate solu-
tions that correspond to the spatial configuration depicted in one sketch map. In this case,
the matching algorithm may give us other solutions that satisfy many constraints of the de-
picted spatial configuration rather than the exact solution expected according to the ground
truth. In such a scenario, the effectiveness of the employed representation for alignment
is difficult to evaluate. Therefore, we restrict the size of the geo-referenced maps approxi-
mately to the size of input sketch maps by defining a bounding box around the OSM data.

In survey sketch maps, people often abstract away unnecessary detail and aggregate
several objects. In particular, street segments are highly aggregated (>60%) spatial objects.

www.josis.org
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(b)(b)

(c)

(a)

Figure 2: (a) The drawn sketch map of a region in Münster, Germany, (b) the extracted
landmarks and street segments, and (c) the corresponding geo-referenced map.

The cognitive studies on survey sketch maps [38, 45] also reveal that people draw up to
90% consistent information with respect to corresponding geo-referenced maps, despite
aggregation. For these evaluations, we aggregate street segments in the geo-referenced
map manually using the ground-truth information provided by the participants. During
the experiment, the participants were asked to indicate, for each sketched object, the cor-
responding objects in the geo-referenced map. This is then the ground truth information
for the drawn objects. This helps to bring the street networks on same aggregated level
as the sketch maps. This also leads to the aggregated city-blocks covering large areas sur-
rounded by the street segments. The drawn objects in sketch maps are extracted using the
segmentation procedures proposed in [4, 5]. The method recognizes and interprets the de-
picted objects, and then transfers them into a digital format, i.e., shape files (see Figure 1
Step 1). Figure 2 shows the sketch map, recognized spatial objects, and the corresponding
geo-referenced map extracted from the OSM dataset of a region in Münster Germany.

4.2 Criteria for the selection of representations

The selection of a representation is highly dependent upon the context of the matching task.
Thus, it is not surprising that different representations are considered for different aspects
of space and/or application areas. After analyzing the sketch aspects, the existing repre-
sentations, and the required information for the alignment task, we identify four criteria
for the selection of plausible representations. The criteria are as follows:

JOSIS, Number 14 (2017), pp. 31–59
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(a) Reference system and its scope

In quantitative representations, the reference systems (Cartesian, polar) define the spatial
objects and their locations in the space. However, in a qualitative representation of sketch
maps, we do not require the reference system as the sketch maps do not employ metrics.
We only consider the scope of the reference system used. The local reference system refers
to the qualitative distinctions between the spatial objects acting as referencing objects, i.e.,
positional reasoning on points [15], while global reference systems make distinctions using
a common reference system such as cardinal directions [14].

Unlike geo-referenced maps, sketch maps do not have a single, global reference frame
(e.g., north, south). Rather, the sketched objects themselves act as a referencing object.
Therefore, we need qualitative representations that support a local frame of reference. For
example, the relative orientation of landmarks with respect to street segments rather than
their global orientation in terms of the north and south.

(b) Relevant qualitative information

Due to the nature of cognition, qualitative information between distant objects is likely to
be distorted. Thus, we need representations that compute qualitative information between
nearby objects. Based on empirical studies [38,45] Wang et al. divide the sketch aspects into
two categories: (a) information at a local level, and (b) at a global level. The information
at a local level refers to the relations between nearby or adjacent objects, while global level
information represents possible qualitative distinctions between all objects in the scene.

In sketch maps, the relative orientation and ordering information of distant objects are
distorted [38, 45]. Therefore, we need representations to formalize the relative orientations
(sketch aspect (b), (c)) and ordering information (sketch aspect (d), (e)) at a local level—
between nearby objects. Other aspects (sketch aspect (a), (f), and (g)) need representations
to formalize the topological relations at a global level.

(c) Sketch aspects and representational primitives

The objects in sketch maps are vectorized and approximated by points, lines, and poly-
gons. The formalization of spatial configurations between these objects needs plausible
representations which support these objects as representational primitives. For example,
representations of the RCC family [9, 34], DRA [30], and the OPRAm [29] to capture re-
lations between landmarks, city-blocks, and street segments. Similarly, the ordering infor-
mation (sketch aspect (d), (e)) requires intervals, defined by start and end points of drawn
objects. To formalize these aspects, we need representations which support intervals, i.e.,
the interval algebras [1, 32].

(d) Representations with different granularities

In QSR, the granularity of spatial representations refers to knowledge at different levels
(i.e., coarse, fine, and flexible). The different levels of granularity provide flexibility in the se-
lection of plausible representations. In freehand sketches, the landmarks are approximated
by polygons, curved streets are straightened, and their angles of connectivity at junctions
are distorted [38]. The representations with coarse and flexible granularities help to over-
come these cognitive distortions.
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For example, to formalize the relative orientation of street segments, the representations
with flexible granularity have an advantage over the representations with fixed granulari-
ties [15, 27]. Due to cognitive distortions, these representations lead to different qualitative
relations when the relations are compared in geo-referenced maps. Similarly, for the topol-
ogy of extended objects (sketch aspects (f), (g)), RCC is perhaps the best-known formalism.
The three algebras, RCC5, RCC8 [9,34], and RCC11 [24] provide flexibility in the selection
of representations.

4.3 Plausible representations

Following the selection criteria and the initial investigation on representations in [22, 23,
25, 38], we identify a set of plausible representations. We use these representations in the
alignment task to justify their efficacy for the alignment of sketch maps. The following
representations have been identified:

(a) Topology of street segments in street network

For the topology of street segments, we analyze different representations such as DRA7

[42], DRA72 [30] from the DRA family. These representations support oriented line seg-
ments (street segments) formed by a pair of two points, a start point, and an end point. The
DRA7 is a coarser representation that captures the topology (connectivity information) be-
tween two line segments, while, the DRA72 is a finer representation that captures both the
topology and orientation between two line segments (see Figure 3ab).

(b) Orientation of street segments

For the relative orientation of street segments, we investigate different representations
which support line segments as representational primitives such as the ULSTRA_119 [8],
DRA72 [30], and the OPRAm. The granularity factor (m ∈ N+) in OPRA offers the flexi-
bility to define orientation sectors. We encode different orientation sectors in OPRA8 such
as the Klippel’s turn directions [26], and the six and eight orientation sectors (denoted as
OS_6 and OS_8) identified for sketch maps (see Figure 3c) in [23]. Note that OPRAm

considers oriented points (in our case street junctions) as representational primitives. It
distinguishes the position j of point A with respect to point B, and the position i of B with
respect to A written as (Aab <j

i Bbc) .

(c) Relative orientation of landmarks with respect to street segments

Most of the representations in the family of positional reasoning deal with points in the
plane R

2 [30, 39]. However, in freehand sketches landmarks are represented as polygons
and considering their centroids for relative orientation loses salient shape information. For
the relative orientations of adjacent landmarks (sketch aspect (c)), we investigate different
representations and propose the LeftRight representation [21]. The representation consists
of six relations between landmarks and street segments at a conceptual level such as left_of,
right_of, crosses, crossed_by, front_of, and back_of.

JOSIS, Number 14 (2017), pp. 31–59
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Figure 3: (a) QCN of street segments using the DRA7, (b) QCN of street segments using the
DRA72, (c) the orientation sectors found in sketch maps, (d) the orientation of connected
street segments using the six orientation sectors encoded in OPRA8.

(d) Linear ordering of landmarks and street segments along a route

For the linear ordering of adjacent landmarks and street segments along a route (path
formed by connected street segments), we investigate representations such as IA [1], the
coarse IA, and the PA [41]. The coarse version of IA consists of nine binary relations:
before (<), meets (m), overlaps (o), during (d), equal (eq), and their inverses. Following the
relations preserved in sketch maps, we aggregate the IA relations: starts (s) and finishes (f)
into overlay (o) and started_by (si) and finished_by (fi) into overlapped_by (oi) relation. We do
not consider the PA as it ignores relevant ordering relations (i.e., during and overlap, and
their inverses etc.). IA(s) considers intervals (start and end points) of the spatial objects as
representational primitives (see Figure 4a). These intervals are projected on street segments
of a route and linear ordering of the drawn landmarks is computed.

BC

lm4lm3

Figure 4: (a) The drawn objects in a sketch map, (b) the linear ordering of adjacent land-
marks along the street segments (AB, BC) using the coarse IA relations.
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(e) Cyclic ordering of landmarks and street segments around junctions

This aspect describes the cyclic ordering of drawn objects around reference junctions. We
investigate different representations such as the CIA [32], a coarse CIA [21], and the CPA
[2]. Due to the circular nature of the timeline, the coarse CIA consists of seven cyclic
ordering relations: disjoint (d), meets (m), met_by (mi), overlaps (o), during (d), during_inv
(di), and equal (eq) [21]. As with the PA, we do not consider the CPA as it ignores relevant
cyclic ordering information (i.e., overlap, during, etc.). The CIA considers cyclic intervals (c-
intervals) as representational primitives. Figure 5a illustrates the c-intervals of landmarks
and street segments are their projections onto a central point.

The projection is given by sweeping the 360◦ view at junctions and c-intervals are repre-
sented as a center angle θ measured counter-clockwise from the origin direction (1, 0) and
an angular half-distance (h) between the center and the end-points of the cyclic interval [21].

(a)

CE

EA

DC

Figure 5: (a) The c-intervals of drawn objects around a reference junction, (b) cyclic ordering
between objects using the coarse CIA relations, and (c) the projected c-interval of landmark
(lm3) on the junction (B).

(f) Topology of landmarks and city-blocks

In sketch maps, city-blocks are relatively large areas surrounded by street segments and a
sketch boundary [24]. The topological constraints on landmarks and city-blocks together
allow us to partially constrain the position of landmarks with respect to city-blocks. For
the topology, we investigate different representations which support extended objects as
representational primitives such as RCC5, RCC8, [9,34] and RCC11 [24]. The RCC11 is a
refinement of RCC8, distinguishes 11 possible topological relations, while the RCC5 and
RCC8 distinguish five and eight relations between extended objects. Figure 6c illustrates
the topological relations between landmarks with respect to city-blocks.

(g) Topology of city-blocks

As with the sketch aspect (f), we use the RCC5, RCC8, and RCC11 to capture the topolog-
ical relations between city-blocks. Figure 6b illustrates the topological relations between
city-blocks using the RCC11 relations. It distinguishes the point (ECP ) and line (ECL)
contacts between two city-blocks.

JOSIS, Number 14 (2017), pp. 31–59



44 JAN, SCHWERING, SCHULTZ, CHIPOFYA

lm1

lm3

lm2

CB3

CB4

CB1

CB2

lm4

Figure 6: (a) The landmarks and city-blocks in a sketch map, (b) the topological relations
between city-blocks using the RCC11, and (c) the RCC5 relation (proper-part pp) between
landmarks with respect to city-blocks.

4.4 Qualitative qualifiers

To formalize spatial configurations in the input maps as QCNs, we use a qualitative qual-
ifier [20] and spatial rules [21]. The spatial rules are defined in the declarative spatial rea-
soning system CLP(QS) [3, 36]. CLP(QS) provides an alternative approach to deriving and
defining cognitively plausible constraints between objects compared to other pure relation-
algebraic approaches in the QSR community. The qualifier and spatial rules extract QCNs
as a complete graph for the employed representations. Some of the representations extract
relations at a local level between adjacent objects. The QCNs at the local level are incom-
plete graphs. The qualifier and spatial rules introduce a none relation between non-adjacent
objects in the scene. The none relation helps to complete the graphs of QCNs, which is a ba-
sic requirement of the used matching algorithm (LCM) [6]. The LCM takes QCNs as input
and aligns spatial objects via matching QCNs.

The adjacency of drawn objects is computed using the relative distance between ref-
erent and reference objects. An object is considered adjacent or local if its footprint in-
tersects with the buffer around the reference object. The distances between landmarks
and street segments are always variant in sketch maps. Therefore, defining a common
buffer size for all freehand sketches is not possible. In order to compute relative buffers
for sketches, we define a method which computes minimum distances (dismin(lmi, stj) =
{d1, d2, d3, ..., dn}) between landmarks and street segments and then considers the maxi-
mum distance (dismax(di)) as buffer size from the computed minimum distances [21].

Adjacency(lmi, stj)

{
true if dis(lmi, stj) ≤ dismax(di)

false otherwise

5 Empirical investigation: Single-aspect alignment

In this section we present the evaluation of different representations in the context of align-
ing the sketched objects with the corresponding objects in the geo-referenced maps using
the constraints of one sketch aspect at a time. For each representation, QCNs are extracted
from the geometric representation of input maps using the qualifier [20,21]. QCNs are then
used as input to the LCM for the alignment task.
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We evaluate the plausibility of each representation by observing how many objects have
been correctly matched via matching QCNs of the representation. Within a single instance
of the matching process, the total number of objects in an input sketch map and the total
number of true positive (correct matches) are recorded. Thus, we attain a percentage of
correctly matched spatial objects. The true positives are verified based on the ground truth
information provided by participants during the experiments. The standard deviation is
calculated on matching results across the 10 sketch maps of Location-I and 10 sketch maps
of Location-II. The standard deviation is used to identify the variances between matching
results: the larger the standard deviation the greater the variance in the matches.

The cognitive study on survey sketch maps [45] found that people preserved around
90% correct configurations between drawn objects with respect to the reality. This leads to
incorrect alignment of some spatial objects in the input maps. Therefore, in the SketchMapia
framework, we do not expect 100% correct alignment. We are aiming for the alignment of
a sufficient number objects so that the integration of additional sketched information with
underlying GISs is possible. We conduct a Mann-Whitney one-tailed U-test on matching
results of the representations against the threshold value of 90% found by Wang et al. [45]
in order to verify if the matching results have insignificant differences. A representation
is considered plausible if it provides an insignificant difference (p > 0.05) in the matching
result with respect to the given threshold and also gives smaller standard deviation across
the results.

We also conduct the Mann-Whitney (U-test) and ANOVA test on matching results of
the representations to further observe the significant statistical differences. The U-test is
used in the matching results using two representations, while ANOVA is used between
more than two representations (i.e., different variants of the OPRA and ULSTRA). Within
the ANOVA, we used the post hoc test to compare the differences between the two best-
performing representations. We considered the standard p-value (p < 0.05) for the signifi-
cance testing. Based on the U-test and ANOVA, we can argue that the proposed represen-
tations are able to yield a high accuracy of matches, and are thus effective for the alignment
of spatial objects. The sketch aspects and corresponding representations used for the align-
ment task are described in the following sections.

5.1 Topology of street segments with DRA7 and DRA72

For the topology of street segments (sketch aspect (a)), we evaluate the DRA7 [42], DRA72

[30]. Using the representations, topological constraints are extracted as QCNs globally-
between all street segments in the sketch and geo-referenced map which are used as input
for the alignment of street segments. The matching results from the sketch maps in both
locations are compiled. The results show that the DRA7 gives 82.14% (average) correct
matches (see Figure 7a). The p-values of the U-test also show that the proposed represen-
tation differ significantly in the case of both locations.

Note that the DRA72 is a fine-grained representation. As with the DRA24 and DRA80,
it conveys both the topology and orientation between line segments. Due to distortions
of street segments (i.e., straightening curve streets, distorting angles of streets at junc-
tions), we get inconsistent QCNs in sketch maps in comparison with the QCN in the geo-
referenced maps using the DRA72. This leads to an incorrect alignment of street segments.
Therefore, we find a low accuracy rate of matches (average 50.01%) as compared to DRA7.
Figure 7a illustrates the accuracy of matches using the DRA7 and DRA72 in both locations.
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The vertical error bars (in black) represent the standard deviation of the matches over the
used datasets.

5.2 Relative orientation of landmarks with LeftRight representation

The LeftRight representation captures the relative orientation (sketch aspect (c)) of ad-
jacent landmarks with respect to street segments. We employ the representation and the
extracted QCNs are used as an input in the LCM. For both locations, the LeftRight gives
75.01% correct matches (see Figure 7b). We missed the quarter of matches because land-
marks are not always uniquely identifiable. We find many associations in the correspond-
ing geo-referenced map and this reduces the probability of getting the exact correct matches.

The representation considers adjacent landmarks as extended objects and captures their
relative orientations with respect to street segments. Most of the representations for po-
sitional reasoning deal with points in the plane [30, 39]. We cannot find an alternative
representation in the area of QSR to compare the matching performance against our pro-
posed LeftRight representation. The representation shows consistent performance across
the used datasets and is thus effective for the alignment of drawn spatial objects.

Figure 7: (a) The accuracy rate of matches using the DRA7 and DRA72 and p-values repre-
sent significant differences in the matching results, (b) the accuracy of matched landmarks
using the LeftRight representation.

5.3 Orientation of street segments with ULSTRA and OPRA8

For the alignment of street segments using the relative orientation (sketch aspect (b)), we
use the ULSTRA_119 [8], the coarse ULSTRA_3, the OPRA8 with six and eight orienta-
tion sectors (OS_6 and OS_8), and the OPRA8 with Klippel’s eight turn directions [26].
In [28], Klippel’s eight turn directions are categorized into the navigation directions with
different cone sizes (denotedOPRA_nav) and the directions with equal cone sizes (denoted
OPRA_eq). We also consider these versions of Klippel’s turn directions in our evaluation.
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Using these representations, orientation information between street segments is extracted
as QCNs. The extracted QCNs of the maps are then used for the alignment task.

Figure 8 illustrates the accuracy rates of matches using these representations. The
OPRA(OS_6) gives a high accuracy of matches. Note that the used six orientation sectors
(OS_6) are derived from extensive empirical studies on sketch maps [23]. They capture
salient qualitative distinctions which overcome the impacts of cognitive distortions. They
give consistent QCNs in both input maps that lead to 65.77% matches, on average, in both
locations. The remaining inconsistent matches are caused by incorrectly depicted street
segments at junctions. Using other representations, we get inconsistent QCNs in the input
maps, and thus we observe a low accuracy of matches. The ANOVA test demonstrates a
significant difference between matching results across the used representations. A post-hoc
test (pTukey) also demonstrates a significant difference between the two best-performing
representations in Location-II. It also reveals that the difference between these two repre-
sentations is not significant in Location-I. Overall, the OPRA(OS_6) shows the statistical
differences and consistent performance in the matching task across the used dataset.

Figure 8: The accuracy of matched street segments using the ULSTR and OPRA8 rep-
resentations. The pTukey values between the OPRA(OS_6) and OPRA_nav show the
significant differences in Location-II and insignificant differences in Location-I.

5.4 Linear ordering with interval algebras (IAs)

We employ IA [1], and the coarse IA relations to capture the linear ordering (sketch aspect
(d)) of adjacent landmarks and street segments along a route. Using the spatial rules de-
fined in [21], the linear ordering of between projected intervals of landmarks are extracted
which are used as inputs for the alignment of landmarks.

For both locations, the matching results of the representations are compiled. Figure 9a
shows the accuracy rates of qualitatively matched landmarks. In sketch maps, most of the
landmarks are drawn to be disconnected from other landmarks. As a result, we observe
similar accuracy rates (around 70%) using both representations. The p-values of the U-test
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also show the insignificant differences between the matching results (see Figure 9a).
However, the outlines of landmarks in freehand sketches are imprecise, the relations

with imprecise boundaries lead to different relations when compared to relations in geo-
referenced maps. The aggregated relations in coarse IA help to maintain similar ordering
relations in both maps, thus assisting in the matching of landmarks with an average accu-
racy of 73.78%.

5.5 Cyclic ordering with cyclic interval algebra (CIA)

Due to the oriented cyclic nature and angular view at junctions, we find only coarse cyclic
ordering relations in both sketch and geo-referenced maps. Therefore, we used only the
coarse seven CIA relations [21] to formalize the cyclic ordering of landmarks and street
segments around reference junctions (sketch aspect (e)). Using the spatial rules in [21],
the cyclic ordering relations are extracted. We used these relations in the alignment task.
The coarse CIA relations give an average accuracy of 79.46% matches of landmarks in
both locations (see Figure 9b). The remaining inconsistent matches are caused by imprecise
outlines of landmarks and misplaced landmarks around reference junctions.

Figure 9: (a) The accuracy rates with insignificant differences (p-values) in the matching
results using the IA and coarse IA relations (b) the accuracy of qualitatively matched land-
marks using the coarse CIA relations.

5.6 Topology of landmarks and city-blocks with RCC

To formalize the topology of landmarks and city-blocks, we employ RCC5, RCC8, and
RCC11. Using these representations, topological constraints are extracted which are used
for the alignment of landmarks.

The accuracy rates of matches are compiled to justify their efficiency in the alignment
task. Figure 10a illustrates the accuracy rates of matches and the statistical differences using
the ANOVA and post-hoc test across the representations. The ANOVA test shows a trend
towards significant differences, while the post-hoc test reveals the fact that differences are
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not significant across the two best-performing representations. However, the RCC5 gives
a relatively high accuracy of matches as it captures the topological relations without taking
into account boundary intersections of landmarks. It overcomes the effects of imprecisely
drawn boundaries and this leads to an average accuracy of 75.13% matches as compared
to other representations. Thus RCC5 is suitable for the alignment task.

Figure 10: (a) The accuracy rates of matched landmarks and the ANOVA and post-hoc test
results across the used representations, (b) the accuracy rates matched city-blocks using the
RCC5, RCC8, and RCC11.

5.7 Topology of city-blocks with RCC

This sketch aspect describes the topology of city-blocks. Different representations are used
to formalize this sketch aspect such as RCC5, RCC8, and RCC11. Using these representa-
tions, QCNs are extracted for the alignment of city-blocks.

The overall evaluations show that RCC11 gives a high accuracy of matches. The ANOVA
test demonstrates the significant statistical differences across the used representations (see
Figure 10b) and the RCC11 gives consistent performance across the used datasets. The
post-hoc test shows insignificant differences between the two best-performing representa-
tions (i.e., RCC8 and RCC11). However, the RCC8 and RCC5 lose the salient topological
distinctions of connectivity (line and point contact) between city-blocks. Therefore, we find
inconsistent matches. Figure 10b shows the accuracy rate of matches in both locations. Us-
ing RCC11 we observe 82.03% correct matches, while RCC8 and RCC5 give averages of
66.42% and 17.44% of correct matches respectively.

Table 1 summarizes the invariant sketch aspects ((a) to (g)), the corresponding plausi-
ble representations, and their matching performances within the single-aspect alignment
approach. The compiled results are the average accuracy rates of correctly matched spa-
tial objects (street segments, landmarks, and city-blocks) in sketch maps of Location-I and
Location-II.
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Invariant sketch aspects (a to g) Plausible
representations

Accuracy rates (%)

a. Topology of street segments DRA7 82.14
b. Orientation of street segments OPRA(OS_6) 65.77
c. Orientation of landmarks w.r.t street segments LeftRight 75.01
d. Linear ordering of landmarks and streets along
routes

Coarse IA 73.78

e. Cyclic ordering of landmarks and streets around
junctions

Coarse CIA 79.46

f. Topology of landmarks and city-blocks RCC5 75.13
g. Topology of city-blocks RCC11 82.03

Table 1: The sketch aspects and plausible representations with the accuracy rates of
matches. The accuracy rates are compiled results of correctly matched street segments,
landmarks, and city-blocks.

6 Empirical investigation: Multi-aspect alignment

In this section we demonstrate the alignment of spatial objects using the constraints from
multiple sketch aspects (via multiple representations), where the constraints from one sketch
aspect may confirm the alignment of some objects in another sketch aspect, or the con-
straints from one aspect may further refine consistent matches in another aspect. The
approach improves the alignment by optimizing the selection of candidate solutions that
agree on the constraints from multiple sketch aspects. In multi-aspect alignment, we use
the representations with a high accuracy of matches in Section 5.

6.1 Topology and linear ordering in multi-aspect alignment

Procedure For the alignment of spatial objects across multiple sketch aspects, we use the
hierarchical approach where the constraints from multiple sketch aspects are employed
one after another. In order to align of landmarks, we used the topology of city-blocks
(sketch aspect (g)), the topology of landmarks and city-blocks (sketch aspect (f)), and linear
ordering of landmarks inside city-blocks (sketch aspect (d)).

First, we start with the alignment of city-blocks in the maps. In single-aspect align-
ment, we observed that city-blocks can often be matched accurately based on topological
relations in the RCC11 [24]. Therefore, the RCC11 is employed to align city-blocks in the
input maps. Afterwards, only the landmarks in the correctly matched city-blocks are con-
sidered in the next stage of the alignment process. In the actual execution of the alignment
algorithm, the correctly matched city-blocks are simply those participating in the highest
evaluated matches. This means that there may be multiple sets of city-blocks that are con-
sidered to be correctly matched and the algorithm would have to evaluate several of these
possibilities starting with the one that has the highest evaluation.

In the second step, we used the RCC5 to formalize the topology of landmarks with
respect to correctly aligned city-blocks (sketch aspect (f)). This allows us to partially con-
strain the position of landmarks with respect to aligned city-blocks. The constraints using
the RCC11 and RCC5 refine the landmarks in both inputs maps and optimize the selection
of candidate solutions towards a particular set of landmarks during the alignment process.
As the last step, we employed the linear ordering (sketch aspect (d)) on landmarks within
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the matched city-blocks by projecting their intervals on street segments (in a clockwise di-
rection) of the city-blocks. The extracted linear ordering relations are then used as input to
the LCM.

Figure 11b illustrates the topological relations between city-blocks (CB1 and CB2) in
the sketch map and corresponding city-blocks (CB1’, CB2’) in the geo-referenced map, the
topological relations between landmarks and city-blocks, and the linear ordering between
landmarks inside city-blocks. Using these multiple aspects, landmarks maintain similar
constraints in both maps and thus helps in exciting the alignment of landmarks.

CB1

Figure 11: (a) Landmarks and city-blocks in the sketch and geo-referenced maps, (b) rela-
tions between city-blocks and landmarks using the RCC11, RCC5, and the coarse IA re-
lations, (c) diagram representing possible alignments (1 and 2) of landmarks in city-blocks
(CB1, CB2) with the landmarks in city-blocks (CB1’, CB2’) in geo-referenced map.

Evaluation In order to demonstrate the efficiency of the proposed approach, the afore-
mentioned datasets of sketch maps are used. In each sketch map, we considered all the
drawn city-blocks which are correctly matched in single-aspect alignment and contain a
maximum number of drawn landmarks. In Location-I and Location-II, we have 74 and 88
correctly matched city-blocks. We consider the alignment of all depicted landmarks in these
city-blocks. The constraints from RCC11 and RCC5 are enforced to refine and focus on the
set of landmarks inside the particular city-blocks. Afterwards, the linear ordering relations
are extracted between landmarks by projecting their intervals on the street segments of the
city-blocks. The extracted ordering relations are used for the alignment of landmarks. We
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do not consider the alignment of landmarks in the wrongly matched city-blocks; handling
such landmarks is subject to future work.

For both locations, the matching results of landmarks are compiled to justify the efficacy
of the proposed approach. Using the multi-aspect alignment, we observed the average
85.20% of correctly matched landmarks in Location-I and 82.60% matches in Location-II.
While using the single-aspect (i.e., the relative orientation of landmark), we observed an
average of 75.01% accuracy in both locations. Thus, the approach appears to be suitable for
the alignment of drawn landmarks in sketch maps. Table 2 illustrates the number of cor-
rectly matched city-blocks and the average accuracy rates of correctly matched landmarks
in these city-blocks for both locations.

No of correctly matched
city-blocks

Accuracy of correctly
matched landmarks in
city-blocks (%)

Location-I 74/90 85.20
Location-II 88/106 82.60

Table 2: The accuracy rates of correctly matched landmarks in the matched city-blocks
using the constraints from multiple sketch aspects.

6.2 Topology and relative orientations in multi-aspect alignment

Procedure In sketch maps, street segments are highly aggregated spatial objects. Dur-
ing the alignment, this leads to many possible candidate solutions in the corresponding
geo-referenced maps. For the correct alignment of street segments, we again used the hi-
erarchical approach where constraints from multiple sketch aspects are enforced on the
street segments such as the orientation of adjacent landmarks with respect to street seg-
ments (sketch aspect (c)) and the topology and the relative orientation of street segments
(sketch aspect (a and b)) in the street network.

First, we start with the alignment of landmarks based on their relative orientations (left,
right) with respect to the adjacent street segment. We select a set of landmarks which are
aligned correctly within the single-aspect alignment approach. The selected set of land-
marks helps refine the street segments. We only considered the street segments which are
adjacent to those landmarks. In the next stage of the alignment process, we only focus on
the alignment of refined street segments in both maps. In the second step, we imposed
the topological relations using the DRA7 to ensure that all the selected street segments are
connected. As a final step, we employed the relative orientations between street segments
using the OPRA(OS_6). The relative orientations between connected street segments are
extracted as QCNs, which are used as inputs to the matching algorithm.

Figure 12 illustrates the benefit of multi-aspect alignment: the constraints using relative
orientation (left, right) of the adjacent landmarks with respect to street segment S1, S2,
and S3 and the topological relations (exxs, sxsx) between street segments help to refine
the street segments in both maps. The light gray region indicates the proximity threshold
used to define adjacency of landmarks with respect to street segments. Further, the relative
orientation using the OPRA(OS_6) (i.e., left, right, front, etc.) enforce the alignment of S1,
S2, and S3 with street segments S1’, S2’, and S3’ in the corresponding map as they have
consistent constraints in both input maps.
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Evaluation The evaluation of proposed approaches is demonstrated using the street seg-
ments from the same datasets of sketch maps. The constraints of the first two sketch aspects
(sketch aspect (c) and sketch aspect (a)) are used to refine the street segment in the street
network. Afterwards, the relative orientation of street segments is employed on the refined
street segment using the OPRA(OS_6) and QCNs are extracted, which are used as input
for the alignment task.

Using the multi-aspect alignment, we observe 84.10% of correct matches for the street
segments in Location-I and 83.82% matches in Location-II, while using the single-aspect
(i.e., relative orientation of street segments), we observed 65.77% average correct matches
only. Thus, the approach appears to be suitable for the alignment of street segments in the
street network.

(b)

S2

A

Figure 12: (a) Street segments and landmarks in the sketch and geo-referenced maps, (b)
the employed constraints using multiple aspects, and (c) diagram representing alignments
of street segments with the help of the aligned adjacent landmarks.

7 Discussion on empirical results

In this study we evaluate different representations in the context of aligning the survey
sketch maps with corresponding geo-referenced maps. In general, the representations with
the coarse and flexible granularities maintain similar qualitative relations across the input
maps. These representations also overcome the effects of cognitive distortions (i.e., straight-
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ening curve streets, distorting angles at the junction, and approximation of boundaries).
However, the coarse representations may obscure relevant qualitative distinctions as they
capture relations at an overly abstract level. In this case, their use may lead to an incon-
sistent alignment. Therefore, we evaluated representations with different granularities to
justify their suitability for the alignment of spatial objects.

We conduct a one-tailed U-test on matching results of the representations against the
threshold value of 90% correct matches to verify if the matching results have insignificant
differences. In single-aspect alignment, the one-tailed U-test shows that some of the proposed
representations give significant differences (p < 0.05) except the representations such as
RCC11, DRA7, CIA (for Location-I), and LeftRight (for Location-II). However, the signif-
icant differences were overcome in the multi-aspect alignment with hierarchical matching
approach and the proposed representations show insignificant differences (p > 0.05) in the
matching results with respect to the given threshold.

Based on the evaluations we identify a set of plausible representations to formalize spa-
tial configurations in the input maps. These representations overcome typical cognitive
distortions and allow us to extract relations at an appropriate and useful level of granu-
larity for the alignment task. The coarse representations are derived from the fine-grained
representations by observing the qualitative distinctions that people preserved in collected
sketch maps. They capture salient relations between drawn objects. Similarly, the base rela-
tions in the other proposed representations also reflect the preserved relations in freehand
sketches. This ensures the correct alignment of spatial objects.

For the relative orientation of street segments, the representations with finer granular-
ity such as DRA72, ULSTRA, etc. gives different relations as compared to the relations
in geo-referenced maps. This leads to an incorrect alignment of street segments, while the
OPRA(OS_6) with six orientation sectors overcome these cognitive distortions and gives
consistent relations in both maps. This helps to align street segments correctly with an av-
erage accuracy rate of 65.77% in the case of both locations. The ANOVA test also shows
significant differences in the matching results across the considered representations. The
average accuracy rate of matches is further improved up to 83.96% using the alignment
across multiple sketch aspects. The remaining inconsistent matches are caused by erro-
neously depicted street segments in the street network.

For the alignment of landmarks, we used representations in the family of RCC. In
sketch maps, the boundaries of landmarks are imprecise. The sketchers are in general not
precise about the relations involving boundaries. Therefore, the distinction between over-
lapping and disjoint boundaries becomes less important. The RCC8 and RCC11 make
distinctions between boundary intersections. Therefore, we find only 60.29% and 61.36%
correct matches, while using the RCC5, we find 75.13% correct matches. In the alignment
across multiple aspects, the accuracy rate of matches is further improved up to 84.87%. In
the ANOVA test, the matching results also show a trend towards significant statistical dif-
ferences across the used representations. The RCC5 relations are important for alignment
across multiple aspects as they help to constrain the positions of landmarks with respect to
city-blocks without taking into account their boundary intersections.

For the alignment of city-blocks, we again used the representations in the family of
RCC. We observed that the RCC11 gives a high accuracy of matches as it captures the
salient qualitative distinction, preserved in sketch maps. The RCC11 gives 82.03% (av-
erage) of correct matches within the single-aspect alignment. In contrast, the RCC5 and
RCC8 ignore this distinction, which causes inconsistent matches of city-blocks. The ANOVA

www.josis.org

http://www.josis.org


COGNITIVELY PLAUSIBLE REPRESENTATIONS FOR THE ALIGNMENT OF MAPS 55

test also shows significant differences in the matching results. Thus RCC11 is a suit-
able representation of the alignment of city-blocks. Similarly, the other coarse represen-
tations (i.e., coarse IA and coarse CIA) also bring both sketch and geo-referenced maps
on the same qualitative level, thus help to improve the alignment of spatial objects. The
LeftRight representation for the relative orientation of landmarks gives consistent accu-
racy rates (around 75%) for the used datasets. These accuracy rates are sufficient for the
alignment and integration of spatial information in freehand sketches.

In some cases, the post-hoc test across the two best-performing representations shows
insignificant statistical differences in the matching results. The test reveals that these rep-
resentations can be used as an alternative for the alignment of survey sketch maps from an
urban setting.

8 Conclusions and future work

In this study we identify a set of plausible spatial representations to formalize invariant
sketch aspects that account for typical cognitive distortions. The representations capture
qualitative relations from the geometric representations of the input maps as QCNs, which
are used for the alignment of spatial objects via matching QCNs.

These representations are evaluated by automatically aligning the spatial objects us-
ing two different approaches and then measuring the accuracy of the alignment, i.e., de-
termining whether each object in a sketch map is aligned with the intended object in a
geo-referenced map. Firstly, the representations are evaluated by aligning the objects on
individual sketch aspects, where QCNs from one representation are used in the alignment
task. The alignment using individual sketch aspects ignores interdependencies of con-
straints across multiple sketch aspects. As a result, it loses the opportunity to constrain the
solutions in the search space during the alignment process. Therefore, we find relatively
low accuracy rates of matches. Secondly, representations are evaluated using the align-
ment across multiple sketch aspects. In multi-aspect alignment, QCNs from two or more
than two representations are used for the alignment of spatial objects. The approach sig-
nificantly improves the alignment by optimizing the selection of candidate solutions that
agree on the constraints from multiple sketch aspects.

In this article, we investigate the suitability of a range of qualitative representations for
the alignment task. There are several challenges in the task of automatically aligning and
integrating sketched information that are out of the scope of the current study. In our future
research, we will address the following issues.

• The matching algorithm LCM used in this study handles the QCNs of the proposed
representations individually. The algorithm needs to be extended to consider inte-
grating constraints from multiple representations. The integration of constraints will
help to improve the alignment of spatial objects that agree on the constraints from all
aspects of the space.

• People typically aggregate geometric objects when sketching, e.g., a series of line seg-
ments representing a long street are often merged in a corresponding sketch map.
Aggregation is a central challenge in interpreting sketch maps. For this empirical
investigation, we aggregate streets in geo-referenced maps manually to obtain a com-
patible level aggregation in both maps. Thus, the alignment algorithm needs to be
able to match aggregated sketched objects to a set of non-aggregated objects in the
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geo-referenced map automatically.
• In sketch maps, you may find additional information that is not present in the geo-

referenced map or erroneously depicted spatial objects. During the alignment, this
kind of extraneous or contradictory information leads to inconsistent matches. In
future, we will investigate how this contradicting information can be isolated during
the alignment process so that we can integrate additional sketched information as
volunteered geographic information and ignore the incorrectly depicted objects.

• We focus on the formalization of invariant sketch aspects derived from the empirical
studies on survey sketch maps of an urban environment. Therefore, we also used
only the survey sketch maps for the empirical investigation on representations. In
future work, we will investigate the relevance of the proposed representations for the
alignment of sketch maps in different settings such as route maps, urban areas with
grid-like structures, and sketch maps from rural areas.
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