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Abstract: The increasing use of location-aware devices has led to an increasing availabil-
ity of trajectory data. As a result, researchers devoted their efforts to developing analysis
methods including different data mining methods for trajectories. However, the research
in this direction has so far produced mostly isolated studies and we still lack an integrated
view of problems in applications of trajectory mining that were solved, the methods used
to solve them, and applications using the obtained solutions. In this paper, we first discuss
generic methods of trajectory mining and the relationships between them. Then, we discuss
and classify application problems that were solved using trajectory data and relate them to
the generic mining methods that were used and real world applications based on them.
We classify trajectory-mining application problems under major problem groups based on
how they are related. This classification of problems can guide researchers in identifying
new application problems. The relationships between the methods together with the as-
sociation between the application problems and mining methods can help researchers in
identifying gaps between methods and inspire them to develop new methods. This paper
can also guide analysts in choosing a suitable method for a specific problem. The main
contribution of this paper is to provide an integrated view relating applications of mining
trajectory data and the methods used.
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1 Introduction

The development in the field of information and communication technology especially
in mobile sensing and wireless communication is flooding us with data containing time-
varying geographic positions. Though this kind of data is also associated with challenges
such as exhausting our storage capacity and our data transmission bandwidth, researchers
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have shown that these data sets constitute a precious resource. Their analysis can lead
to solutions for important research problems in different fields such as urban planning,
transportation, behavioral ecology, sports scene analysis, surveillance, and security [53].

Researchers in movement analysis have made important contributions by developing
methods and tools to solve specific application problems. As researchers continue to ad-
dress diverse application problems [73] we urgently need an integrated view of the ap-
plication problems solved using trajectory data and the mining methods available for ad-
dressing each class of application problem. Such an integrated view would allow other
researchers to easily identify the issues already solved, the methodological gaps, and to
draw inspiration for new method development from the relations between problems and
methods. The objective of this paper is to contribute to the provision of an integrated view
of trajectory mining application problems and methods. The paper also presents a survey
of applications that exploit the solutions to these application problems. Available analysis
methods can be classified as computational, statistical, visual, or a combination of these.
This paper focuses on computational methods of trajectory mining.

The remainder of this paper is organized as follows: after this introduction, Section 2
presents a brief overview of trajectory data and trajectory data mining. Section 3 dis-
cusses mining methods for trajectory data while Section 4 discusses application problems
addressed using these methods. In addition, Section 4 relates the mining application prob-
lems to the methods presented in the paper, which are used to solve them. Section 5 reviews
applications that exploit the solutions to application problems discussed in Section 4. Sec-
tion 6 briefly presents open issues that need to be addressed for future development of
trajectory data mining. In Section 7, we conclude and list directions for future work.

2 Trajectory data and trajectory data mining

In this section, we briefly explain the background concepts that form the basis of the re-
search surveyed. We define the concept of trajectory data and locate trajectory data mining
in the broader domain of data mining. For reasons of space, we do not discuss these con-
cepts in detail but interested readers can follow the corresponding references indicated in
this section.

2.1 Trajectory data

Based on the technology by which they are recorded, mobility data is available in different
forms. Spinsanti et al. [122] differentiated GPS (global positioning system), GSM (global
system for mobile communications), and geo-social network based trajectory data. Pelekis
and Theodoris [112] added two other forms; RFID (radio frequency identification) based
and Wi-Fi based data. GPS based data is composed of temporally ordered sequences of ge-
ographic coordinates recorded by a GPS-enabled device carried by the moving object. GSM
based data is composed of temporally ordered sequences of identifiers of the cells in which
the moving object passes. Geo-social network based data is content found on Internet social
media and to which geographic coordinates have been attached. RFID based data contain
a sequence of identifiers of RFID readers through which the moving object passed, while
Wi-Fi based data contain a sequence of identifiers of access points that communicated with
the moving object. Though the properties of these forms of data, e.g., their accuracy, show
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that they are very different [112, 122], they have been used to address similar or related
application problems using similar or related mining methods.

A trajectory can be generally formally represented as: T=(p;...p,) Where py=(id, lock, t,
Ay) is the k' position, idy is the position identifier, locy is the spatial location of the posi-
tion, t; is the time at which the position was recorded, and Ay is a possibly empty list of
additional descriptive data (e.g., direction, occupancy status, etc.). The spatial location of
the position may be represented in different ways depending on the recording technology
(e.g., lock= (x, y) for GPS-based data, and loci = cell ID for GSM-based data).

2.2 Trajectory data mining

Data mining is an important step of a process, commonly known as knowledge discov-
ery [37,95] that extracts useful information from huge datasets. Data mining methods
and applications have been widely surveyed in the general data mining domain. For in-
stance, a survey of data mining methods for classical relational and transactional data can
be found in [37] and [57]. Beyond the classical relational and transactional data, some re-
searchers [100-102] provided an overview of mining tasks on geographic data. The tasks
they discuss are generally analogous to the tasks in the general data mining domain but
the mining methods are adapted to handle the peculiarity of geographic data such as the
spatial dependency and the combination of spatial and non-spatial components. Though
the tasks presented in these surveys have analogous tasks in the movement data domain,
the review does not consider the temporal dimension that is inherent in movement data.

Andrienko et al. [5] proposed a conceptual framework for classifying movement analy-
sis techniques in general. In their framework, they consider a movement analysis process
to consist of one or more tasks. The types of tasks are distinguished based on the type of in-
formation sought, which is defined in terms of the elements involved, i.e., objects, space or
time, and the specific target which is either characteristic or relation. They also distinguish
tasks based on the analysis level, which is either elementary or synoptic. Andrienko et
al. [5] also proposed a taxonomy of methods for analyzing movement data. This taxonomy
focuses on the methods in the domain of visualization and interaction. The contribution
of our paper extends the work of Andrienko et al. [5] into the domain of computational
analysis methods.

From the applications side, Castro et al. [22] surveyed the work on mining traces of
taxis. They classified the surveyed work into three categories: social dynamics, traffic dy-
namics, and operational dynamics. Though their survey provided an extensive literature
review, it considered only the work done on taxi traces. We therefore need a survey that
considers applications of trajectory data mining without limit to a specific type of trajec-
tories. Our work differs from the survey in [22] by considering traces in general and by
discussing specific application problems that are of major interest in different application
fields.

We survey the work done from the application side according to the framework shown
in Figure 1. As the framework shows, there are different types of moving objects that can be
tracked. Tracking these objects generates a set of trajectories and some questions of which
the solutions can be used in some application fields. We call these questions application
problems because their solutions are not application in themselves but knowledge used
in application fields. The application problems are solved using specific trajectory mining
methods. For instance, if moving people are tracked we get their trajectories and some
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Figure 1: General framework of application-driven trajectory data mining.

questions come to our mind regarding, for instance, the characteristics of these people or
the geographical space where they move. By mining these trajectories we may discover
places where many people stop frequently and stay for a considerable long duration. These
places are characterized as hotspots and the knowledge about hotspots can be used, for
instance, in business for advertisement, in public security for crowd monitoring, and in
transportation for taxi pick-up point recommendation. Therefore, hotspots discovery is an
application problem of which the solution can have various applications.

The core task at the mining step is the application of a specific mining method. This
is preceded by a trajectory data pre-processing step, which prepares the data for mining.
This step includes tasks such as data cleaning, trajectory compression, map matching, and
trajectory segmentation. Data cleaning aims at filtering noise from the data while trajec-
tory compression aims at reducing the amount of trajectory sample points to reduce the
volume of data to be processed. Map matching aims at adjusting trajectory sample points
to the roads in case the movement follows a road network while trajectory segmentation
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divides a trajectory into meaningful sub-trajectories required for subsequent operations. A
discussion of trajectory pre-processing tasks can be found in [150].

3 Trajectory mining methods

Similar to the general domain of data mining, trajectory data mining aims at discovering in-
teresting knowledge (e.g., patterns) from the data and it has two primary goals: prediction
and description. Prediction consists in using some variables in the data to determine un-
known or future values of other variables of interest, while description focuses on finding
human-interpretable structures describing the data. We do not try to discuss all existing
mining methods; instead we review generic ones and identify the relationships between
them. By generic mining methods we mean mining methods applied on a wide range of
trajectory data in a wide range of applications. We divide the methods discussed into two
categories: primary methods and secondary methods. Given a trajectory dataset, primary
methods aim at categorizing the trajectories based on their properties. On the other hand,
secondary mining methods are composite methods in the sense that they apply a sequence
of primary mining methods or classical statistical methods or a combination of the two.

The discussion of the methods focuses on the objective of the method, its general work-
ing principle and the data granularity level at which it works (whole trajectories versus sub-
trajectories, single trajectory versus multiple trajectories, and trajectories of single moving
object versus trajectories of multiple objects). The discussion ends with an attempt to iden-
tify relationships between different methods.

3.1 Primary mining methods

Primary trajectory mining methods are used to categorize the trajectories based on their
properties. The application of a primary mining method followed by the interpretation of
its results may be the sole intended analysis or the primary mining method may be used
to prepare the data for an extended analysis possibly with other mining methods. Primary
trajectory mining methods include trajectory clustering and trajectory classification.

3.1.1 Clustering

Trajectory data clustering aims at describing a trajectory dataset by grouping the trajecto-
ries into a finite set of categories, also called clusters, based on their movement character-
istics. The trajectories in the same cluster exhibit movement characteristics that are similar
and different from those of trajectories in other clusters.

There have been efforts to develop trajectory-specific clustering approaches mainly by
adapting statistical and probabilistic models to account for the characteristics of trajecto-
ries. For example, the mixture models based clustering approach proposed by Gaffney
and Smyth [42] groups together trajectories that are likely to be generated by a common
representative trajectory by adding Gaussian noise. In the same line, Alon et al. [2] model
trajectories as sequences of transitions between positions and use a hidden Markov model
(HMM) that best fits the trajectories to model a cluster.

Though trajectory-specific clustering approaches exist, state-of-the-art clustering algo-
rithms for trajectories are extensions of traditional clustering algorithms through a proper
definition of similarity (or distance) functions. A survey of traditional clustering algorithms
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can be found in [57]. Depending on the goal of analysis some similarity (or distance) func-
tion such as similar route, similar destination, similar source, similar route and destination,
or similar direction is used to determine which trajectories belong to the same cluster. A de-
tailed discussion of how distance and similarity functions are applied to determine cluster
membership can be found in Rokach [119].

Among the algorithms that have been extended, two well-known can be mentioned:
DBSCAN (density based spatial clustering of applications with noise) [36] and OPTICS
(ordering points to identify the clustering structure) [6]. As examples of such extensions,
T-OPTICS [106] was developed as an extension of OPTICS by defining a spatio-temporal
distance for comparing and clustering trajectories while ST-DBSCAN (spatial-temporal DB-
SCAN) [14] uses two parameters for similarity measure to improve the identification of
clusters and noise.

Several clustering algorithms have been developed and categorized in different ways
(e.g., see in [40,57,58]) based on different features but a crisp boundary between the cat-
egories is difficult to draw. Most of the categorization approaches identify partitioning,
hierarchical, and density-based algorithms. Partitioning algorithms group all objects into a
pre-specified number of clusters. These algorithms start from a random partitioning which
is then refined through iterations that may move an object from one cluster to another. K-
means [94] is an example of such algorithms. Hierarchical algorithms organize the objects
in a multilevel structure of clusters and sub-clusters. Using loose proximity requirements,
the algorithms find clusters at a higher level while by tightening the proximity require-
ments they find sub-clusters. An example of such an algorithm is the BIRCH (balanced
iterative reducing and clustering using hierarchies) [147]. Density-based algorithms parti-
tion the objects into clusters based on their density, i.e., starting from one object, the cluster
grows as long as new objects exist in the neighborhood, and the cluster is considered valid
if its total number of objects exceeds a threshold. DBSCAN is an example of algorithm in
this category.

Trajectory clustering works on a set of trajectories taking each trajectory in turn and
assigning it to a cluster. However, there are some cases in which the input to the clustering
operation is not a set of trajectories but only one trajectory. In these cases, the objective is
to cluster the points of the single trajectory with the aim of characterizing some positions
on it. This case is exemplified in Palma et al. [109] where the points on the input trajectory
are clustered to discover stops on it.

Trajectory clustering can be applied on either whole trajectories or sections of trajecto-
ries depending on the goal of analysis and the similarity function applied. For example, if
the similarity function is defined as similar origin and similar destination, the trajectories
can be clustered as a whole because the route followed is not important. An example of
this case can be seen in [43] where the interest is on the overall directions of extra-tropical
cyclone trajectories for obtaining clusters such as south-to-north oriented and west-to-east ori-
ented. On the other hand, if the interest is on different locations traversed by the trajectories,
for example the similarity is defined as having visited the same types of places; the cluster-
ing is applied on sections of trajectories. The TraClus clustering algorithm [79] follows this
approach.
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3.1.2 Classification

The objective of classification is to find a rule to assign objects into pre-defined classes. The
knowledge about class assignment is available in the form of a set of predefined classes
and a sample set of objects already labeled with the class they belong to. This sample is
called a training set. Similar to classification in general, trajectory classification aims at de-
termining the class label of trajectories from a predefined set of labels based on the features
of the trajectories. For example, the trajectory classification may be aimed at labeling each
trajectory from a large set with its transportation mode, given a small set of trajectories
manually labeled with the transportation mode used.

Most trajectory classification algorithms follow a traditional two-step approach: first
extracting a set of discriminative features and then using the extracted features to train an
existing standard classification model. The first step involves identifying the properties of
the trajectories that are likely best for identifying the class to which each trajectory belongs,
and determining the values of the properties which are then represented in a specific form
(e.g., a vector). For example, properties such as the average speed of the trajectory, average
acceleration, trajectory duration, and length can be used. The discriminative power of the
considered feature depends on the types of classes at hand. For example, we may consider
that the acceleration has a much higher discriminative power than the trajectory length for
the vehicle type classes. The second step selects a standard classification model and applies
it to the extracted features.

A detailed discussion of the traditional classification algorithms can be found in [57].
Among these methods, the following have been commonly applied in trajectory classifica-
tion. The decision tree algorithm has been used by Zheng et al. [152] to classify trajectories
into different transportation modes. They first segment the trajectories and extract discrim-
inative features such as average velocity of a segment, heading change rate, and velocity
change rate, which are then fed into a decision tree based inference model for classification.
Support vector machines (SVMs) were used by Bolbol et al. [15] to solve the same issue of
transportation mode classification. Through a statistical evaluation, they first analyze the
discriminative power of four features (speed, acceleration, distance, and rate of change in
heading) on six transportation modes (bus, car, cycle, train, underground, and walk). Af-
ter identifying the speed and acceleration as the best discriminative features, they applied
the SVM algorithm on these features to study equal-sized instances of several segments of
trajectories for classifying them.

In many of its applications, trajectory classification is performed after other analysis
operations such as segmentation and clustering which prepare the features on which the
classification will be based. For example, the TraClass framework [78] applies trajectory
segmentation and clustering to extract region and sub-trajectory features that are then used
for a support vector machine (SVM) based classification of the trajectories.

3.2 Secondary mining methods

While primary trajectory mining methods aim at categorizing the trajectories, secondary
mining methods generally aim at analyzing the spatial, temporal, or spatio-temporal ar-
rangement of the individual trajectories, within their categories or between categories.
Several mining methods can be put in this category, but we discuss in this section a few
generic ones: pattern mining, outlier detection, and prediction.
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3.2.1 Pattern mining

Trajectory pattern mining aims at discovering and describing the movement patterns hid-
den in trajectories. It provides information about when and where the pattern occurs, and
the entities involved in it. A large number of types of movement patterns have been re-
ported in the literature. An integrated view of them can be found in the survey done by
Dodge et al. [35]. Likewise, several methods have been developed for mining these pat-
terns. The methods can be put into three categories: repetitive pattern mining, frequent
pattern mining, and group pattern mining.

Repetitive pattern mining applies basically on trajectories of a single moving object
while frequent pattern mining applies on trajectories of multiple moving objects but in
a relative time; that is, the objects may not move at the same time and the only condition
is that they visit approximately the same places in the same sequence. Similar to frequent
pattern mining, group pattern mining applies to trajectories of multiple objects but the
movement is considered in an absolute time; that is, the objects move together.

Repetitive pattern mining concerns regular movement patterns such as the movement of
a commuter, which is repeated every day, or the movement of a migratory bird, which is
repeated every season. A repetitive pattern is also called a periodic pattern because the
object follows approximately the same route after an approximately constant time period.
The discovery of periodic patterns is complicated by the approximate nature of the pat-
terns in terms of space and time; i.e., the object does not visit exactly the same location at
corresponding time instants of the period and the period does not exactly have the same
value in different cycles.

A common approach in discovering periodic movement patterns is to apply the min-
ing on sequences of locations. In an earlier study, Cao et al. [20] required the period to
be specified as input and clustered the locations corresponding to the same offset of the
period to discover frequent regions. They then iteratively combined discovered frequent
regions to get complete periodic patterns. The work presented by Cao et al. [20] extended
the approach presented in a previous study [97], but both studies required the period as a
user input to the mining process. The Periodica algorithm [85] overcame this undesirable
requirement to specify the period in advance. This algorithm first detects automatically
the period using an approach combining Fourier transformation and autocorrelation. The
algorithm finds reference spots, which are dense regions containing more trajectory points
than others, and detects the different periods in each. The algorithm then discovers pe-
riodic patterns from movement sequences between reference spots with the same period
using a hierarchical clustering for which the distance measure is based on a probabilis-
tic model. Compared to most of previous related work, the Periodica algorithm presents
two features that address the unknown and varying period issue commonly found on real
life movement data: automatic period detection and the consideration of different periods
during the periodic pattern discovery.

Frequent pattern mining is about extracting (parts of) routes that have been frequently
followed by the moving objects in the trajectory dataset. Frequent trajectory patterns can
be defined using spatial or spatiotemporal characteristics of the trajectories [68]. The def-
inition based on spatial characteristics considers only the sequence of the locations vis-
ited. The frequent spatiotemporal sequential patterns [19] and the generalized sequential patterns
(GSP) [108] are examples of this case. The definition based on spatiotemporal characteris-
tics considers, in addition to the sequence of the locations visited, the transition time be-
tween the locations. The T-Patterns (or simply trajectory patterns) [49] are an example of this
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Figure 2: (a) A spatiotemporal sequential pattern, (b) a temporally annotated sequence
(TAS), and (c) a T-pattern.

second case. Giannotti et al. [49] defined a T-pattern as “a set of individual trajectories that
share the property of visiting the same sequence of places with similar travel times.”. T-
patterns evolved from the temporally annotated sequences or TAS introduced by Giannotti et
al. [47]. In TAS, the elements of a sequence are generic events, e.g., purchases or logged web
accesses, without any specific spatial information. Figure 2 shows three types of sequences
that make different frequent patterns: for spatiotemporal sequential patterns (a) only the
sequence of locations is considered while for T-patterns (c) the transition time between
locations (e.g., from location A to location B it takes between 10 and 12 minutes) is also
considered. T-patterns (c) combine the feature of location sequence from spatiotemporal
sequential patterns (a) with the feature of transition time from TAS (b).

A common approach to mining frequent patterns consists in finding important regions
from the trajectories and then applying sequence mining on a temporally annotated se-
quence of these regions [49,65]. In this line, Giannotti et al. [49] developed two approaches
for extracting T-patterns. The first approach involves a discretization of the space to iden-
tify the regions of interest. Then, the actual mining step applies the method introduced in
Giannotti et al. [47] to mine sequences of regions of interest with temporal annotations. The
second approach dynamically derives the regions of interest from trajectory segments and
then translates the trajectories into a set of sequences of regions from which it iteratively
builds T-patterns.

Group pattern mining aims at extracting movement patterns involving groups of objects
that move together. A general condition is that the objects that form a group stay close
in space for a considerable period of time. Several group patterns and their variants have
been defined based on the general condition of spatiotemporal closeness, the internal struc-
ture of the group and the characteristics of group members. The mostly studied patterns
are flocks [12,130], convoy [63], and swarm [84]. Figure 3 shows examples of these three
patterns.

JOSIS, Number 13 (2016), pp. 61-99



70 MAZIMPAKA, TIMPF

0.
0,00;0, 0,090, 0,03 9,

: » , ) ,1 o
tyég ty@ég ty@/

(a) (b) (c)

Figure 3: Examples of group pattern: (a) Flock, (b) Convoy, and (c) swarm.

A flock is a group of at least m objects that travel together for at least k consecutive
timestamps such that at any of these timestamps they are found within a disc of radius r.
The pattern is defined by the three parameters m, r, and k.

The convoy pattern relaxes the disc shape constraint to represent a group of moving
objects forming any shape. It is a group of at least m objects traveling together for at least
k consecutive timestamps such that at each of these timestamps the group can be found
using a density-based clustering with parameters d as the neighborhood distance and m as
the minimum number of objects.

The swarm pattern is an extension of the convoy pattern, which further relaxes the
constraint of consecutive timestamps. It is defined by the same parameters as the convoy
except that in a swarm k is the minimum number of timestamps at which the group is found
irrespective of whether the timestamps are consecutive or not. For example, with m=4 and
k=2 the pattern in Figure 3 (c) is not a convoy because only three objects (O;, O, and O3 )
are found in the group for at least two consecutive timestamps. However, this pattern is a
swarm because at two timestamps (¢; and £3) the group includes the required minimum of
four objects and the swarm pattern does not require the timestamps to be consecutive.

The category of group patterns also includes patterns in which the members of the
group have some interaction in which each member has a specific role. An example of
such pattern is the leadership pattern [4] in which the group comprises a leader which moves
ahead and followers for the time duration of the pattern. Another example is the chasing
pattern [31] in which the object moving ahead aims at escaping the follower, which tries
to reach it. Different examples of group patterns can be found in [76] under the general
concept of relative motion (REMO).

Common approaches to group pattern mining involve clustering methods and checking
the condition on parameters that define the pattern such as the minimum number of group
members and the minimum duration of the pattern. For example, density-based clustering
has been applied in [129] to mine flocks, in [62,63] to mine convoys, and in [86,139] to mine
swarms. For swarms, the analysis starts by applying a clustering method at the level of
a single timestamp, and then links spatial clusters belonging to different timestamps but
sharing an appropriate fraction of objects regardless of their temporal distance.
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3.2.2 Outlier detection

The objective in trajectory outlier detection is to find trajectories that do not comply with
the general behavior of the trajectory dataset. While pattern mining focuses on patterns
that are common in the trajectory dataset, outlier detection focuses on rare patterns (e.g.,
following a path different from the common path followed by most of the other trajecto-
ries).

Similar to trajectory classification, trajectory outlier detection can be performed by min-
ing either whole trajectories or parts of trajectories. The work presented in [146] is an exam-
ple of outlier detection applied on whole trajectories, while examples of outlier detection
applied on sub-trajectories are found in [77,88,140]. For outlier detection applied on parts
of trajectories, each trajectory is first segmented into sub-trajectories and then some dis-
tance function or clustering method is used to detect outlying sub-trajectories. Finally, the
trajectories to which the detected outlying sub-trajectories belong are identified as outliers.
This approach has been followed in the TRAOD algorithm [77].

Outliers often appear as a by-product of other mining methods especially clustering.
Because of this, most outlier detection approaches in the literature adopt some clustering
algorithm and identify as outliers those objects that are not found in any cluster. Hence,
the main issue is finding the appropriate distance measure that will discriminate these
deviating trajectories.

A basic approach for detecting trajectory outliers analyzes the neighborhood of each
trajectory by counting the number of neighbors or using a density-based clustering method.
In this approach, the trajectories that have too few neighbors are categorized as outliers.
The iBAT [146] anomaly detection framework follows an extended variant of this approach.
In iBAT, the study area is partitioned into a grid structure and the trajectories crossing
the same source-destination cell-pair are grouped. Finally, the approach uses an isolation
mechanism to identify outlying trajectories exploiting the property that they are few and
different in their groups.

Another category of approaches to trajectory outlier detection follow the procedures
used in classification methods. For instance, a set of predefined features can be extracted
from the trajectories, and then a standard distance measure applied on the extracted vec-
tors. This approach was followed in [140] where distance measures have been applied on
four features (direction, speed, angle, and location) to discover trajectory outliers. Alter-
natively, trajectory outliers can be discovered by training a two-label classifier model in
which one label corresponds to normal trajectories while the other corresponds to abnor-
mal trajectories according to the features under consideration. This approach was followed
in [82].

3.2.3 Prediction

Prediction using trajectory data mainly aims at guessing the future location of a moving
object based on existing trajectories. It has been especially motivated by the fast growing
development of location-based services, one of its major application areas [50]. The objec-
tive of most of the studies on trajectory based prediction is to predict a location (destination
or next location), but there are some studies which aim at predicting the entire route gen-
erally based on a road network. Trajectory based location prediction applies to a set of
trajectories.
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The studies on location prediction are based on two approaches (Markov models and
sequential rules or Trajectory patterns) and can be classified into three categories: i) those
considering only the data of the concerned moving object [50, 61,71], ii) those considering
only the data of other moving objects [9], and iii) hybrid approaches; i.e., considering both
the data of the concerned object and those of other objects [104, 105,137]. Studies based
on Markov models use probabilistic models for location prediction. Examples of work
following this approach can be found in [7,98]. Studies based on trajectory patterns mine
frequent patterns and association rules by defining a trajectory as an ordered sequence of
time-stamped locations, and then using sequence mining methods. Examples of work fol-
lowing this approach can be found in [104,136,137]. The WhereNext approach [104] extracts
T-patterns and builds a decision tree in which root-to-node paths are used for prediction.
Ying et al. [136] use a similar approach extracting trajectory patterns to capture the move-
ment behaviors that are motivated by geographic, temporal and semantic intentions from
trajectories of users, and then matching the current movement of a user to the extracted
patterns.

Unlike location prediction, which results in a location, the route prediction must pro-
duce a sequence of route segments to a location. The common approaches to route predic-
tion fall in the following three categories:

o Trip observations: The approach involves observing several trips from a driver. For a
new trip, the approach considers the start point and possibly a short starting section
of the new trip, attempts to find a good match with a previous trip, and then uses the
matched trip as a route prediction [41].

e Markov model: The approach builds a probabilistic model from the long-term trip
history of the driver for predicting short-term route. The model looks at the driver’s
just-driven path and predicts the next road segment [69].

o Turn proportions: The approach builds a route by predicting which ways a driver will
turn at successive intersections. For instance, Krumm [70] combines the information
on which proportion of drivers will choose each turn option at an intersection and
the driving times between pairs of road segments to make the turn prediction. This
approach is based on the assumptions that drivers tend to choose the road that will
give them more destination options and that they take the most efficient route in
terms of time to their destination.

3.3 Relationships between trajectory mining methods

In this section we present the relationships between the different mining methods we have
discussed. Table 1 presents these relationships showing primary methods and secondary
methods as headings of rows and columns respectively. The secondary mining method at
the top of a column uses the primary mining method on the left of a row to perform the
task found in their intersection cell. For instance, the outlier detection method may apply
clustering to group similar trajectories or sub-trajectories, which may be a required step for
detecting trajectory outliers. In addition, an example of this relationship may be found in
the reference entry [77]. The empty table cell means that we have not seen in the literature
where pattern mining uses classification.
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Secondary methods
Pattern mining Outlier detection Prediction
2 Clustering e Grouping e Grouping similar e Grouping similar
S periodically related trajectories or users [137]
kot locations [20, 85] sub-trajectories [77] Grouping similar
s Grouping close trips of a
E trajectories [62,129] user [3,41]
§ Extraction of places Grouping user’s
A of interest for stay points for
frequent pattern building trajectory
mining [49] patterns [136]
Aggregating close Grouping visited
locations for locations for
sequential pattern building periodic
mining [45] patterns [61]
Classification T -

o Categorization into Categorizing
normal and on-going trajectory
abnormal to one of defined
trajectories [82] trajectory

clusters [3], or
trajectory
patterns [104]

Table 1: Relationships between trajectory mining methods.

4 Trajectory mining application problems

In this section, we discuss different application problems that have been or can be solved
by mining trajectories. We categorize the application problems and relate them to generic
trajectory mining methods discussed in previous sections. It is important to note that there
is no one-to-one mapping between the methods and application problems. Different ap-
plication problems may be addressed using the same method and one application problem
may use more than one method; it depends on the specific tasks involved in addressing
the application problem as shown in Table 2. The table relates application problems to the
methods discussed in previous sections and provides references on where the application
problem has been addressed using the methods mentioned.

4.1 Characterization of moving objects

The aim is to analyze the trajectories of moving objects for deriving some structure or in-
formation that describes the moving objects. Several instances of this application problem
have been studied such as inferring activities of humans [117] or animals [120], determin-
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Application Application problem Main tasks Mining methods
instances
problems
Characterization of Inferring activities, inferring  Extraction of characteristic features and Classification [13,15,117,120,152]
moving objects transportation modes categorization
Human mobility profiling, Extraction of sequences of places Frequent pattern mining [ [26,27]
detecting animal movement  frequently visited clustering [21]
patterns
Discovery of social Detection of social ties Grouping based on stay locations of Clustering [44]
relationship between two individuals, individuals
community discovery " _ " " .
Extracting temporally ordered sequences Frequent pattern mining [44]
of stay locations
Discovery of interaction Finding moving animal groups, evaluating = Group pattern mining [54, 86] §
between animals temporal change in group structure E
5
Characterization of Discovery of land use type Extraction of regions Clustering [92,111] E
places or regions or socio-economic function i
Extraction of characteristic features and Classification [92,111] §

categorization

Discovery of hotspots

Grouping based on spatial and/or
temporal characteristics of the data

Clustering [89,132]

Detection of traffic jams

Finding moving car groups, speed-based
filtering of groups

Flock pattern mining [107]

Discovery and
characterization of
the connectivity
between places or
regions

Connection discovery,
connection strength
estimation, mobility-based
region delineation

Origin-Destination mapping, deriving link
statistics, grouping

Separating normal links from abnormal
links

Clustering [87,118]

Outlier detection [39]

Table 2: Trajectory mining application problems and corresponding methods.


http://www.josis.org

66-19 "dd <(9107) €1 IqUINN ‘SISOf

Application

problems

Detection and
recognition of social
events

Application problem Main tasks Mining methods

instances

Discovery of social events Grouping based on spatio-temporal Clustering [148]
properties

Recognition of discovered Extraction of characteristic features and Classification [18]

social events

categorization

Trajectory-based
prediction

Location prediction, route
prediction

Building a probabilistic model of the
mobility, comparing the current trajectory
to the model

Extraction of ordered sequences of visited
locations, comparing current trajectory
with historical sequences

Prediction based on statistical
methods (e.g., Markov
Models) [7,23,69,98]

Frequent pattern mining (e.g.,
T-patterns, sequence
analysis) [104,136,137]

Prediction of traffic-related
events (e.g., traffic jams)

Extraction of trajectory density and
examining its variation over time on
different paths

Frequent pattern mining (e.g.,
T-patterns) [48]

Trajectory-based
recommendation

Place recommendation

Extracting sequences of locations visited,
popularity-based ranking of locations, and
selecting top popular ones

Route recommendation,
friend recommendation

Extracting sequences of locations visited,
ranking them based on their similarity
with those of the current user, selecting
most similar ones or the owners of the
most similar ones

Frequent pattern mining (e.g.,
T-patterns) [81,134, 156]

Trip recommendation

Extracting sequences of locations visited,
extracting travel preferences in terms of
stay at locations and transition between
them, selecting sequences most matching
the current user’s preferences

Frequent pattern mining (e.g.,
T-patterns) [16, 155]

Table 2 (continued): Trajectory mining application problems and corresponding methods.
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ing the mobility profile such as human mobility routine [26,27] and animal movement
patterns [21,30, 86], and inferring transportation modes [15,152].

There has been a high interest in understanding the behavior of individuals by inferring
the activities they performed or the transportation mode they used during their movements.
Researchers have addressed this characterization problem instance commonly using classi-
fication methods. Another common application problem in the direction of understanding
human behavior is determining human mobility profiles. A common approach to this prob-
lem applies frequent sequential pattern mining to extract the sequences of places that the
user frequently visits. A similar problem of understanding the mobility pattern has been
studied on animals. A common approach to detecting animal movement pattern uses various
movement pattern analysis methods especially methods based on clustering. For example,
Carneiro et al. [21] applied different clustering methods to study the migration habits of
white storks. In particular, they detected flocks by using fuzzy c-means clustering tech-
nique.

4.2 Discovery of social relationships

An aim is frequently to analyze the trajectories of moving objects to discover the existence
of some interaction between the objects and the properties of this interaction. Instances
of this application problem include the detection of social ties between two individuals,
community discovery, and the discovery of interaction between animals (e.g., the predator-
prey interaction).

The success of online social media platforms in connecting people and encouraging
them to share their mobility history has stimulated researchers to study social relation-
ships from mobility data. Some researchers addressed the problem of discovering social
relationships based on co-presence [28], others based on visits to same places [44,131]. Co-
presence, defined as being in the same place at the same time, has been studied by Crandall
et al. [28]. Using a probabilistic model, they found that when two people exhibit multi-
ple co-presences, it strongly indicates the existence of a social tie between them. Wang
et al. [131] used a probabilistic model to study the similarity in mobility patterns of two
individuals and its correlation with their social ties.

A community is a group of entities that share some common interests. In the context of
this paper, the common interests are shown by the existence of interaction between the
entities, which is in turn detected from their mobility behavior. A common approach
to community discovery applies clustering methods. For instance, considering that the
stay-locations of individuals during their movement correspond to their interest, Gaito et
al. [44] extracted the geo-locations as clusters of the stay-locations of individuals and then
performed a density-based clustering of the overlapping geo-locations to discover the com-
munities. They further detected interactions between communities using a sequential pat-
tern analysis.

4.3 Characterization of places or regions

Characterization of places or regions aims to analyze the trajectories of moving objects that
visit places and regions under study to derive some structure or information that describes
these places and regions. This application problem has been studied under many instances
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such as discovery of the semantics of regions in the form of socio-economic functions, the
discovery of city hotspots, and the discovery of habitats of particular animals in ecology.

The discovery of land use types or socio-economic functions in a city is commonly performed
by applying some clustering followed by a classification. Clustering extracts regions, while
the classification assigns land use types or functions to the regions. For example, Liu et
al. [92] derived urban land use types (commercial, industrial, residential, institutional, and
recreational) and the dynamics of urban land use changes by mining taxi trajectory data.
They extracted the temporal distributions of both pick-ups and drop-offs in the pixels of
the study area and then used the k-means clustering method to classify all pixels in the
study area into different classes of traffic source-sink areas. A classification tree method
was then used to quantitatively examine the association of traffic source-sink areas with
land uses. For the same problem, Pan et al. [111] applied a different clustering method, a
modified version of DBSCAN algorithm (iterative DBSCAN), to extract regions based on
the characteristics of the data. They then applied four different classification techniques to
classify the regions into different social functions (land use types) based on the pick-up and
drop-off dynamics. Yuan et al. [141] address the same problem with a different approach, a
topic-based model applied on taxi trajectories and points of interest, and go further to esti-
mate the functional intensity for each functional regional using a kernel density estimation
model. Though this work takes a different approach, it still applies a k-means clustering to
aggregate regions with the same function.

The discovery of city hotspots, which are regions in a city with high and regular intensity
of activity, is commonly performed using clustering methods. Chang et al. [132] define
hotspots as areas with a high number of taxi requests. They first filter trajectories to keep
those with the same context (weather condition, day of the week, and hour of the day).
Then, they apply a clustering on GPS points corresponding to passenger pick-up points.
A hotness index is finally calculated based on the property of the clusters and the distance
from the taxi to the cluster. Liu et al. [89] define hotspots based on the crowdedness of
areas. Similar to other hotspots discovery studies, they use clustering approach. However,
considering that taxis used in the study are a biased sample of vehicles and that taxis are
highly mobile, they propose a new clustering approach: mobility-based clustering. This ap-
proach is based on a crowdedness function, which is computed taking into account the
instant speed of the taxis in the area based on the consideration that low speed may be a
good indicator of high crowdedness and vice versa.

The detection of traffic jams is another instance of region characterization. The common
approach to addressing this problem involves discovering flock patterns, which are then
filtered based on the speed to discover areas of slow flock patterns [107].

4.4 Characterization of the connectivity between places or regions

Discovering and characterizing the existence of a connection between places or regions can
be based on the trajectories of objects moving between them. Instances of this problem
include discovering connected regions, estimating the strength of the connection between
regions, and delineating regions based on the connection between locations within them.
The problem is commonly addressed by deriving an origin-destination mapping in the
form of origin-destination (OD) matrix, deriving some statistics and making groupings
using clustering methods. For example, Liu et al. [87] analyzed taxi GPS traces and the
check-in and check-out data produced by travel smart cards to discover the connections
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and connection strength between different locations in a city on different days. To this end,
they derived an OD matrix using clustering techniques. As an extension to the discovery
of a connection between regions, the interest may be on the discovery of abnormal connec-
tions such as unexpected routes between two regions. This problem instance is commonly
addressed through outlier detection methods, which identify and distinguish normal con-
nections from abnormal ones [39]. Once the abnormal connection is discovered, a further
analysis can be performed to identify the cause of abnormality and the location of this
cause, which becomes a place characterization problem [110].

Other studies went further, from discovering the connection between locations to de-
lineating regions based on human mobility. The common approach in such studies is to
first build a network between locations based on human interaction, and then use some
community discovery technique to partition the network into regions. The later step com-
monly involves clustering methods, which find location groupings with denser interaction
between locations in the group than between groups. The work of Rinzivillo et al. [118]
is an example addressing this problem instance by building a network representation of
human movement from vehicle GPS tracks and then extracting regions using a hierarchical
clustering algorithm.

4.5 Detection and recognition of social events

Detection and recognition of social events aims to analyze the trajectories of moving objects
in order to detect the existence of a gathering. The analysis may go further to recognizing
the type of event. The two common approaches used to address this problem are statistical
methods combined with a classification, and clustering-based methods.

Statistical methods are used to discover a high concentration in a specific area and dur-
ing a specific time interval of stationary objects that were initially moving [48]. Once the
presence of events is detected, a further analysis can be performed to recognize their types.
In this direction, Calabrese et al. [18] analyzed the origins of event attendees from cell-
phones mobility data to recognize the types of events. They used a classification on feature
vectors representing the distribution of attendees’ origins to determine the type of events.

Clustering-based approaches extend the standard clustering to discover groups of indi-
viduals that are not only dense but also of which the shape and location generally do not
change and the members can enter and leave at any time provided there are some members
who commit to the group for a certain time period. In this direction, Zheng et al. [148] apply
a density-based clustering to discover snapshot clusters, which are then analyzed across a
number of timestamps in terms of their locations and members to extract valid gathering
patterns.

4.6 Trajectory-based prediction

This problem aims at analyzing the trajectories of moving objects to make some prediction,
such as the next location of the moving object, its destination, the route it will take, and
the occurrence of traffic related events such as traffic jams. The commonly used methods
for trajectory-based prediction are based on Markov models [7,69,98] or movement pattern
mining [104,136,137].

Giannotti et al. [48] predict traffic congestions by predicting future areas of dense traffic.
The location of areas with a high density of trajectories is predicted using a tree structure of
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T-Patterns, which are patterns capturing a sequence of visited locations and corresponding
transition time. The support value at each node of the tree, which is the number of T-
patterns having the path from the root to the current node as prefix, makes it possible
to quantify the trajectories on different paths which is analyzed over time for prediction.
Another approach applied to the prediction of traffic density is based on Markov model.
This approach was adopted by Castro et al. [23], who built a prediction model using the
probabilities of transition between road segments. In order to predict traffic congestion,
they compare the predicted traffic density and the capacity of the road segments, which
they determine based on the historical traffic density and speed readings.

4.7 Trajectory-based recommendation

Trajectory-based recommendations are enabled by the similarity between people inferred
from their mobility histories. The similarity between people is commonly inferred by de-
termining and comparing their mobility profiles. The assumption behind these recom-
mendation systems is that people who have the same mobility behavior are likely to share
interests and preferences, and hence are potential friends of each other or are likely to visit
the same types of places and follow the same types of routes. For a given individual, once
similar users are found they can be recommended to him or her as friends. Alternatively,
the places that they visited and the routes they used can be recommended to the individual
as places to visit and routes to follow, respectively.

The common approach used to address the trajectory-based recommendation problem
is to apply a frequent pattern mining to extract and compare sequences of locations vis-
ited. In this direction, Li et al. [81] proposed a general architecture for a friend and place
recommender system. The architecture comprises three processes: location history repre-
sentation, user similarity exploration, and friend and location recommendation. For each
user, they perform a hierarchical clustering of stay points to obtain his location history,
which is then represented as a hierarchical graph. In the user similarity exploration, they
retrieve a sequence of shared graph nodes between two users, and then retrieve a sequence
containing such graph nodes from all users” graphs. The similar sequences represent a
movement pattern that other researchers called T-patterns [49], based on which a similar-
ity score is calculated for the pair of users. In the friend and place recommendation step,
people can be ranked based on their similarity scores with respect to a given user. Then
a set of people with relatively high scores can be recommended to the user as potential
friends. A further analysis integrating other data such as points of interest (POls) with
the location histories of these friends can be used to recommend places to the user. The
same approach was applied in [134] and [156]. Like Li et al. [81], Xiao et al. [134] focus
on the first two processes of the proposed architecture but with an added consideration
of the semantics of locations; that is, the location histories are represented as sequences of
places (locations with semantic meaning such as restaurant, shopping mall, ...) instead of
geographic coordinates. The work in [156] presents a complete recommender system built
with this architecture.

Another instance of the trajectory-based recommendation problem is trip recommenda-
tion. This problem instance differs from the place recommendation instance in that trip
recommendation produces not only a set of places to be visited but also the sequence in
which they are to be visited. On the other hand, place recommendation provides one or
more places but without proposing the order of visit. Trip recommendation differs from
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the route recommendation in that trip recommendation does not specify the route to be
followed from one place to the next in the sequence.

Similar to other trajectory-based recommendation problem instances, trip recommen-
dation is addressed through frequent pattern mining methods with some customizations
to handle user travel preferences in terms of stay at locations and transition between loca-
tions. For example, Brilhante et al. [16] model the mobility history of a user as a temporally
ordered sequence of POIs he or she visited, each POI being annotated with the start and
end time of visit. They then determine the travel preference of each user based on the
functional categories of the POlIs in his mobility history. Their system finds a personalized
itinerary for a person by comparing his preference to the preferences of users taking into
account the time budget the person has for the visit. Zheng and Xie [155] distinguished a
generic trip recommendation from a personalized one and developed both. A generic trip
recommendation proposes to an individual top interesting locations and travel sequences
in a given region. On the other hand, a personalized trip recommendation provides an
individual with locations and travel sequences matching his travel preferences.

5 Applications

The knowledge generated through trajectory data mining is useful in different application
areas. The solution to one application problem can be used in different application fields.
For instance, characterizing individuals in terms of their mobility profile can be used in
urban planning for the management of recreational facilities [116], in business for planning
business promotion activities, and in transportation to organize a car sharing system. Table
3 lists application examples, relating them to the application problems on which they are
based, and giving corresponding references in the literature. This section discusses impor-
tant requirements in respective application domains and how these requirements translate
to application problems for trajectory data mining.

5.1 Transportation

In the transportation sector there is often a need to know the characteristics of regions or
places (e.g., to identify major origins and destinations) and the characteristics of moving
entities (e.g., when they move in a large number, and where they mainly stop). These two
issues translate respectively to the application problems of characterizing regions (mainly
hotspots discovery) and characterizing moving objects (mainly determining people’s mo-
bility profile). In some cases these problems extend to trajectory-based recommendation
and trajectory-based prediction. In this category trajectory data mining aim, for example,
atimproving driving experience [142-144], the service of taxis and buses [46,80,83,113,158],
and the planning and management of transportation systems [11,25,93,126].

5.2 Urban planning

Urban planners traditionally rely on labor-intensive surveys for addressing their concerns
to know up-to-date characteristics of different urban regions and to determine the existence
and characteristics of an interaction between regions. The first concern translates to region
characterization, which is achieved by mining trajectories to identify regional functions or
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Application problems”

Applications A B C D E F

Transportation

Improving driving experience [143,144]

Improving the planning and management of transporta- | [93,126] [11,25]
tion systems

Urban planning

Monitoring urban land use and urban boundary evolu- [92,99] [115]
tion

Detecting problems underlying the implementation of
planning decisions [24,91,154]

Environment

Controlling air pollution [33,153]

Controlling noise pollution [96,114,
124]

Energy

Estimating energy consumption [64] [64,121]

Supporting site selection for charging infrastructure of | [103] [103]
electric vehicles

Social applications

Supporting the establishment of friendship and collabo- | [134,135, [134,135,
ration 156] 156]

Understanding individual and community lifestyle [38,145] [145]

* A: Characterization of moving objects, B: Discovery of social relationship, C: Characterization of places or regions, D: Discovery and

characterization of the connectivity between places or regions, E: trajectory-based prediction, F: Trajectory-based recommendation

Table 3: Applications of trajectory data mining and corresponding application problems.
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Application problems’
Applications A B C D E F
Business
Improving advertisement strategies [67] [67] [67]
| Supporting on choosing a business placement [ [66] | | el | ] [66] |
| Improving shopping and selling services | [52,72] | | 2,72 | | ]
Public security and safety
Detecting misbehavior of individuals [29]
| Monitoring big events and crowd behavior [ [128) [ | | | ]
I M:)Iﬁtaﬁntg i)ﬁer_lo}néﬂa_paténﬁa_l to cause natural disas- | [17] [ | |7 T ]
ters
Ecology
Supporting the management of free-ranging cattle [8,59]
| Understanding of habitat use and supporting effectivean- | [56] [ [30,133] | | | | ]
imal habitat management
Sports analytics
Game evaluation to support coaching activities
[55,60,123]

* A: Characterization of moving objects, B: Discovery of social relationship, C: Characterization of places or regions, D: Discovery and

characterization of the connectivity between places or regions, E: trajectory-based prediction, F: Trajectory-based recommendation

Table 3 (continued): Applications of trajectory data mining and corresponding application problems
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land use (e.g., [92,99]). The second concern translates to discovering and characterizing
the connectivity between regions. This has been addressed using trajectory data mining
for exploring urban boundary evolution [115] and detecting problems underlying a trans-
portation network [24,91,154].

5.3 Environment

Quantifying the pollution level at different locations and integrating pollution data with
other data is important for pollution control. This has been translated to the problem of
characterizing places and regions by mining trajectories which are associated with air pol-
lution [33,151] or noise pollution [90,96,114,124] measurement values at different locations.
In this case, trajectory data mining is a method for increasing the number of sampled loca-
tions and integrating and analyzing the data [153].

5.4 Energy

The energy sector is often concerned with determining the energy consumption patterns
of specific regions and individuals. These concerns translate to region and moving object
characterization, which are addressed by mining trajectories of vehicles [121]. The ap-
proach has been followed in implementing eco-driving feedback systems [64,127], and in
site selection for electric vehicle charging infrastructure [103].

5.5 Social applications

Trajectory data mining can support discovering the behavior of individuals and compar-
ing them for different types of recommendations. The issues addressed translate to the
application problems of determining individuals” mobility profiles, discovering and char-
acterizing their social relationships, and eventually trajectory-based recommendation. For
example, the similarity determined from individuals” mobility profiles [81,157] enable a
recommendation of friends [134,135,156], or location and path [10,138,149]. Likewise, the
activities of individuals inferred from their trajectories enable understanding individual
and community lifestyle [38,145].

5.6 Business

The business sector often needs to determine the visit potential of specific places and the
people’s mobility pattern in these places. Trajectory data mining addresses this need by
solving the application problems of characterizing places or regions, characterizing moving
objects, and trajectory-based recommendation. For example, using trajectory data mining
best business location [66,125], best advertisement site [67], and best layout in a store [52,72]
have been recommended.

5.7 Public security and safety

An important need of applications in this domain is to identify and monitor places and
moving objects that have a high potential to cause or be targeted by threats to public se-
curity and safety. Since situations affecting public security and safety are often associated
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with a mass movement, trajectory data mining can contribute to timely detecting or even
predicting these threats. The common application problems that need to be solved are
characterizing places and moving objects, which can extend to trajectory-based prediction.
The approach has been followed for detecting misbehavior [29], monitoring big events and
crowd behavior [128], and exploring the movement of hurricanes [34], which can further
enable predicting their future occurrence [17].

5.8 Ecology

People managing or doing research on animals are mainly concerned with determining
the behavior of individual animals, their interactions, and the habitat use. This work is
viewed as solving the application problems of characterizing individual moving objects
and discovering and characterizing the interactions between them. For instance, trajec-
tory mining has enabled automated detection of activities of animals [8, 56,59], and their
interaction [133], as well as understanding their habitat use [30].

5.9 Sports analytics

The dynamic nature of sports with a lot of movement and events causes a challenge for
a timely evaluation. The major concern is to extract and analyze the mobility patterns of
a player and his interactions with other players. This can be viewed as the application
problems of characterizing moving objects and discovering and characterizing their inter-
actions. By mining the trajectories of players, their movement [55, 60] and their interac-
tions [123] have been evaluated.

6 Open issues for trajectory data mining

Trajectory data mining has attracted a high research interest and given its applications it
is likely to continue attracting this interest. However, trajectory data mining is mainly
progressing in the breadth where most of current work concentrates on developing variants
of existing methods and applying the method variants to the same application problems.
In order to take trajectory data mining to the next higher level there are important open
issues that need to be addressed. This section discusses some of the issues.

6.1 Coping with massive data

Most of the data mining methods applied on trajectories were developed in the era of data
scarcity and/or in a different domain. Since trajectory data is inherently voluminous and
they are increasingly becoming available, future work on trajectory data mining should be
scalable to handle massive data. This calls for among others more efficient indexing and
aggregation methods that achieve a high data reduction while minimizing information loss.

6.2 Data integration and handling of heterogeneity
Most of the existing studies on trajectory data mining are based on one or one type of

dataset (e.g., taxi GPS-based tracks). However, as acknowledged in some papers [92,99]
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such studies face the problem of missing data in some regions or during some periods,
which could be resolved by integrating other types of data (e.g., GSM-based trajectories,
geo-Social media, etc.). Therefore, future work should look into integrating different types
of data by addressing challenges due to their heterogeneity such as reconciling different
data formats and different sampling rates.

6.3 Cross-scale trajectory data mining

A trajectory data mining method is commonly developed and demonstrated on one dataset
with one specific scale and granularity. However, as demonstrated in [74,75] the scale and
granularity at which the method is applied may affect the result. Therefore, future work
on trajectory data mining methods should take into account the scale and granularity to
evaluate their impact on the method parameters.

6.4 Mining methods specialists and application domain specialists

While researchers in trajectory data mining methods have been mainly studying the geo-
metric trajectory with no consideration of application context, recent collaboration efforts
(e.g., the MOVE project [32]) have demonstrated that best results with real life relevance of
trajectory data mining can be achieved by a collaboration between method specialists and
application domain specialists. Such collaboration facilitates the access to relevant data for
methods specialists. It can also support methods specialists in setting suitable values for
parameters used in mining methods, a task which is usually left to the method user without
guidance.

6.5 Privacy handling

While trajectories of animals are easily made openly available, human tracking is asso-
ciated with serious privacy issues making high quality human trajectory data hardly ac-
cessible to mining method researchers. Despite some work done to address these issues
(e.g., anonymization [1,51]) they prevail. Therefore, future work on trajectory data mining
should develop mining frameworks that are more convincing on balancing the extraction
of useful knowledge and preserving the privacy of tracked individuals.

7 Conclusion and future work

The increasing use of location-aware devices has led to an increasing availability of tra-
jectory data representing the movement of moving objects. The potential of these data
in solving important research problems has raised researchers’ interest in analysis meth-
ods for them. In particular, inspired by the progress in mining classical large datasets,
researchers have developed different data mining methods for trajectories. However, the
provision of an integrated view of solved problems and methods in trajectory mining, as
well as the applications based on solutions to these problems has not been explored.

This paper reviewed the literature to identify the application problems that have been
solved by mining trajectory data and the generic mining methods used. It further surveyed
the applications that are based on solutions to these application problems. By surveying
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the objective in using each method and how it works, the paper identified and discussed
relationships that exist between different methods. The paper established a grouping of
application problems and related the problems to the mining methods used to address
them.

The major contribution of this paper is in providing an integrated view of trajectory
mining application problems, the methods used to address them, and the applications that
exploit solutions to these problems. The classification of application problems can help
researchers in identifying new problems where trajectory mining could be profitably ap-
plied. The relationships between the methods and the connection between the application
problems and methods can help researchers in identifying method gaps and inspire them
to develop new methods. The work presented in this paper can also guide analysts in
choosing a suitable mining method for a specific application problem.

The work presented in this paper can be extended by a comparative study of algorithms
implementing a specific trajectory mining method on specific application problems with
a possibility to provide recommendations on the choice between the algorithms. One of
the current trends in movement data analysis is to relate the movement to its embedding
context [73]. In view of this trend, our future work will be on customizing algorithms im-
plementing some of the presented methods to perform a context-aware mining of trajectory
data for selected application problems.
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