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Abstract: As technologies permitting both the creation and retrieval of data containing
spatial information continue to develop, so do the number of visualizations using such
data. This spatial information will often comprise a place name that may be “geocoded”
into coordinates, and displayed on a map, frequently using a “heatmap-style” visualiza-
tion to reveal patterns in the data. Across a dataset, however, there is often ambiguity in
the geographic scale to which a place-name refers (country, county, town, street etc.), and
attempts to simultaneously map data at a multitude of different scales will result in the
formation of “false hotspots” within the map. These form at the centers of administrative
areas (countries, counties, towns etc.) and introduce erroneous patterns into the dataset
whilst obscuring real ones, resulting in misleading visualizations of the patterns in the
dataset. This paper therefore proposes a new algorithm to intelligently redistribute data
that would otherwise contribute to these “false hotspots,” moving them to locations that
likely reflect real-world patterns at a homogeneous scale, and so allow more representative
visualizations to be created without the negative effects of “false hotspots” resulting from
multi-scale data. This technique is demonstrated on a sample dataset taken from Twitter,
and validated against the “geotagged” portion of the same dataset.
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1 Introduction

1.1 Passively georeferenced data

The volume of data containing spatial information is increasing rapidly, both in terms of
the amount generated and its availability to the researcher. In many cases, however, the
quality of the spatial information contained within this data is low, with only small pro-
portions (circa 1% reported by this project, Craglia et al. [3] and Dredze et al. [7]) of such
data typically containing direct georeferences (e.g., GPS-derived coordinate-pairs). The
majority of spatial references associated with such data are more vague (e.g., place-names)
and often exhibit ambiguity in either location or scale, making it difficult to define their
exact locations. These ambiguities are collectively referred to as “spatial ambiguity” for the
purposes of this paper. One set of data that typically suffers from such spatial ambiguity is
that which may be referred to as “passively georeferenced” (PG) data.

PG describes data that contain an indirect spatial reference, but are distinguished be-
cause the spatial reference was not specifically intended as a means of locating that data
on a map and as such can only be used to provide an approximate location. Examples of
PG data include text that contains either a place-name or reference to features from which
a place-name may be derived (such as the Eiffel Tower for Paris), or posts on a social net-
working website that are attached to a user profile including a “location” field that de-
scribes where they “are from.” In the field of VGI (volunteered geographic information),
such data may be referred to as “implicitly geographic” [3]. Conversely, “actively” georef-
erenced data would describe that which was intended to locate a person or entity in space
at a known scale, such as where a user has identified their precise location on a map or with
a GPS receiver, or provided a full postal address or postcode. In connection with VGI, such
data may be referred to as “explicitly geographic” [3]. One common feature of PG data is
that the location information will typically be in the form of a place-name. Place-names
are described by Longley et al. [25] as the simplest form of georeferencing, which can be
applied to any feature in the landscape (either physical or administrative), at any scale, and
which may or may not be officially sanctioned. It is this variability in scale and meaning
that causes many of the issues referred to in this paper.

An indirect spatial reference such as a place-name may be converted to a direct spa-
tial reference by geocoding: the process of assigning a geographic identifier to a com-
puter record that lacks it, thereby tying information to geographic space [15, 31, 34], nor-
mally in the form of a “representative point” [19]. Geocoding is “a process critical to
nearly every academic, industrial, and government field that seeks to perform any type
of spatial analysis or mapping” [14]; and is used ubiquitously in modern, spatially-aware
web services [20]. Modern geocoding is typically performed “on the fly” by submitting
an HTTP request to an online geocoding service such as the Google Geocoding API or Ya-
hoo! PlaceFinder at little or no cost, and potentially with little appreciation of the uncertain-
ties involved [30]. This can, in some instances, make geocoded data difficult to maintain in
terms of quality, with a number of incorrect, non-official, or outdated address components
being returned from some services [13].

Two main issues of spatial ambiguity arise from the use of place-names, the first of
which relates to whether or not a word is spatial or aspatial (does “Reading” refer to a
town in England, or a person who reads a book?); and to which spatial entity a place-
name refers (in Great Britain, for example, there are nine places listed in the Ordnance
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Survey 1:50,000 Gazetteer named “Whitchurch,” and a further nine that include the word
“Whitchurch” within their name, such as “Whitchurch-on-Thames”). Amitay et al. [1] refer
to these ambiguities as “geo/non-geo,” and “geo/geo” respectively. Both of these issues
fall within the domain of geocoding, and solutions to both are far beyond the scope of
this paper. The second spatial ambiguity arising from the use of place-names relates to the
question of how the “place” itself may be spatially defined. For example, once a single
occurrence of “Whitchurch” had been selected, there is no reliable way to define it in space.
Some may choose to reduce it to its geometric centroid, providing a precise location, but
one that is unlikely to represent the exact location to which the user was referring (an indi-
vidual claiming to live in “Whitchurch” is highly unlikely to live at its geometric centroid).
This is the default behavior of many of the online geocoding services, as they are intended
primarily for zooming a map to a place, rather than defining that place in space. Alterna-
tively, some may choose to generalize “Whitchurch” to a polygon representing its official
administrative bounds. This approach does not, however, solve the problem of “where”
within that boundary is being referred to, and may even have worsened the problem, as
the official bounds may not even contain all of the areas that some individuals consider
to be a part of that “place.” The difficulties of defining “place” are well established in the
literature [34], and are summarized effectively in [4]. A solution has, however, yet to be
identified within the literature, and so it is this latter form of spatial ambiguity that this
paper seeks to address.

1.2 Social media as a source of passively georeferenced data

In recent years there has been a dramatic rise in the use of social media services such as
Facebook and Twitter [24] that has created a vast new set of PG data. This is because
such data will generally be attached to a publicly accessible “user profile,” that contains
basic information about the user, such as name, birthday, likes, dislikes, and so on. Of-
ten, these profiles also include user-defined information relating to their “location” that
may be accessed along with their published content through an Application Programming
Interface (API). It is important to note that such “location” information is intended as a
permanent human-readable description of “where the user is from,” and not a repository
for the ever-changing location of the user as they move in geographic space [10]. This data
may, however, be used as a proxy for the location of their generated content, and the ease
with which such data may be collected and located in this manner has led to a significant
amount of mapping activity by researchers and the media alike.

One of the most prolific targets for such mapping has been Twitter, a social networking
service that allows users to share information in the form of short text “tweets” that are
limited to a length of 140 characters [27]. As a result of their wide user-base, Twitter is
generating a vast amount of data, which has developed beyond “conversational” social
interaction, to the publication of “terabytes of real-time ‘sensor’ data” [2], whereby the
“sensors” are the numerous and geographically diverse users themselves. Goodchild [16]
described this kind of mapping with the term “Humans as Sensors,” though it is distinct
from the “actively” georeferenced “volunteered geographic information” (VGI) to which
he primarily refers. Nevertheless, this data provides the researcher with the opportunity
not only to use the social media posts themselves, but also demographic, temporal, and
geospatial data in order to derive information about human feelings or behavior in both
time and space. There are many examples of data from Twitter being mapped for a vari-
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ety of different purposes including: public health [7], weather reporting [10], earthquake
detection [8], the assessment of Twitter itself as a platform for crowd sourcing and col-
laboration [6, 23], and the assessment of the “geographies of Twitter” [11, 22, 33]. These
examples only represent a small portion of the available literature, but all follow a very
similar methodology to map their respective data: extracting Tweets using the Twitter API,
passing the contents of the “location field” of the user profile to a geocoder to be located,
and then placing them on a map.

With an increase in the use of GPS-enabled Internet-connected devices such as smart-
phones, it is also increasingly possible for social network users to “geotag” their content
with the location at which it was published. Mapping such “geotagged” data is a trivial
yet powerful exercise, using the location of the Tweet as a proxy for the location of the indi-
vidual [10]. There is a second large body of literature arising from mapping Tweets using
this alternative methodology (e.g., [21]). Geotagged Tweets, however, locate the “Tweeter”
at the time they created the data, and are therefore not necessarily comparable to the places
described in their public user profile [3], although they are treated as such in some studies
(e.g., [7,11]). Furthermore, such data represents a very small proportion of that made avail-
able by the social networks (circa 1% reported by this project, Craglia et al. [3] and Dredze
et al. [7]), causing questions to arise about the representivity of such a small sample for
the identification of patterns in the data. Other studies have attempted to extract location
from the content of social media (e.g., [2]), or even to investigate other options such as the
inference of location based upon the location of social connections (e.g., [5]).

1.3 Issues of spatial ambiguity and indeterminate scale

In the process of geocoding, a place-name is typically generalized to a single point in space,
rather than the area that it actually represents, or indeed, the nature of the “place” that was
intended by the creator of the data [19, 28]. This is helpful when placing a label on a map
or zooming to a given location, but less so for the purpose of visualizing patterns in the
data, as much of the information (spatial or otherwise) implied by the use of the place-
name is lost through the use of a simple coordinate pair for its representation. Goldberg
et al. [15] describe this as a “fundamental question” of geocoding: discussing whether or
not the returned point should be the centroid of the geographic object in question, should
be weighted by population distribution, or even whether a boundary should be returned
instead. Either way, it is the resulting loss of spatial context that causes the spatial ambigu-
ity to which this paper refers; whereby the approximate location is known (the coordinate
pair returned from the geocoder), but the specifics or nature of the boundaries to which the
data point originally referred are not. One result of this ambiguity is that it leaves no way to
determine whether two locations are comparable based upon their place-names alone (e.g.,
is “Lancaster” a town, county, or country?). This is important, because only locations at the
same scale (town, county, etc.) may be considered comparable [22], and the comparison
of locations at multiple scales leads to spatial imprecision [35], and the formation of “false
hotspots.”

The author of a PG data point referring to Lancaster in north-west England, for exam-
ple, is unlikely to be referring to the administrative area as a whole, and nor are they likely
referring to its geometric centroid. In reality, the author is referring to an unknown point
that likely (but not definitely) falls within the corresponding boundary. This unknown lo-
cation is not likely adequately represented by the centroid of the enclosing administrative
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area, which represents a generalization of the data that can lead to the formation of a vi-
sually misleading “false hotspot,” the impact of which is dependent upon the geographic
scale at which it is formed, and that at which it is visualized. The concept and impact of
generalization is well established in the literature, and it is an accepted and necessary car-
tographic technique for dealing with the technical limitations of the drawing media being
employed (either paper or digital) [17]. It is equally recognized, however, that generaliza-
tion represents a loss of information and introduces uncertainty into the dataset. As such,
cartographic decisions relating to generalization must be made carefully, and applied to
objects based upon their size and importance relative to the scale at which they are being
mapped [17]. In the case of geocoded PG data, however, the place-names are all general-
ized to a single point irrespective of scale (it may be assumed that all points are of equal
importance for most applications). As a result, the level of generalization varies signifi-
cantly within the dataset, with some data points generalized to the centroid of their coun-
try (a higher level of generalization), but others generalized to the centroid of their town or
district (a lower level of generalization). It is the comparison of this multi-scale data with
differing levels of generalization that results in the formation of “false hotspots” at the lo-
cation to which the geocoder reduces each administrative area. These “false hotspots” will
appear as a dense cluster of data-points on the map, but in reality represent nothing more
than artifacts caused by the inability of the geocoder to locate those data-points at a larger
scale.

In order to illustrate this effect, Figure 1a shows a density map of Tweets relating to
the 2011 wedding of the Duke and Duchess of Cambridge, which exhibits three distinct
“hotspots” and many smaller ones, all of which may be considered as “false.” Of the three
most distinct hotspots: two are located in the major cities of Manchester and London (la-
beled A and B respectively), and represent all of the Tweets that were geocoded to these
cities. The data comprising these hotspots, however, is all located at the geometric cen-
troids of these cities rather than being distributed across them at the locations from which
the Tweets originated, meaning that they must be considered “false.” Of greater concern is
the third hotspot, which is located in the West Midlands (labeled C), away from any signif-
icant centers of population. The addition of bounding-boxes to each country in Figure 1b
(shown in red) helps to identify the cause of this hotspot, clearly demonstrating that this
point represents nothing more than the centroid of the bounding box of England (labeled in
blue), and as such is a “false hotspot” comprised of all the data that could not be geocoded
to a greater level of detail than “England.” The bounding boxes also make it clear that there
are similar (though less significant) hotspots visible at the centroids of Scotland and Wales
(also labeled in blue).

As described by Silvan et al. [32], the extent to which a “false hotspot” is visually mis-
leading may be considered to be the result of the relationship between the scale at which
the object was observed (an infinitely precise point in space, generalized to the centroid of
the enclosing administrative area), and that at which it is represented (the scale at which
it is drawn on the map). As the size of the administrative area increases, more gener-
alization is required to reduce the location to its administrative centroid, and so the more
misleading the point may be. Similarly, the larger the geographic scale of the map, the more
significant the apparent impact of the generalization, and so the more visually misleading
a “false hotspot” will be. A county-scale “false hotspot,” for example, would be extremely
misleading on a large-scale map (e.g., of a city), but would be much less misleading on a
small-scale map (e.g., of a continent). It has previously been suggested that most current
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Figure 1: (a) A density map of geocoded Tweet locations in the UK. (b) Annotated with
bounding boxes for each component country (in red), the associated “country level” false
hotspots (in blue), and examples city-scale hotspots (in green). The dataset is displayed using
a greyscale 2%–99% histogram stretch, and was produced using a 18 km × 18 km density kernel at
1 km resolution.

systems hide uncertainty arising from the comparison of multi-scale data “under the car-
pet” [35] and, following a thorough review of the causes and nature of “false hotspots,”
there is no evidence of any alternative algorithms or approaches to dealing with this issue
within the literature. The only possible exception to this would be [18], which represents
an earlier iteration of this work, and highlighted the issue of “false hotspots” but did not
propose a formal solution.

The purpose of this paper, therefore, is to propose a new algorithm that allows the map-
ping of patterns in spatially ambiguous PG data, whilst avoiding issues associated with the
lack of any explicit scale information. This algorithm will permit the removal of the “false
hotspots” that would otherwise obscure patterns in the data, and thus allow PG data to
be utilized more effectively in the visualization of these patterns. The algorithm “Weighted
Redistribution” is therefore described in order to redistribute data from the centroid of their
respective administrative areas in a manner that will reflect likely patterns in the dataset as
a whole. It is not suggested that redistributed data will be either more or less accurate or
precise than the “raw” PG data on a point-by-point basis, but rather that the resulting pat-
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tern across a large dataset will likely be more representative of the unknown “real” patterns
in phenomena. In this way, the algorithm may be considered akin to other cartographic
techniques such as dasymetric mapping, whereby data is depicted using boundaries of
relative homogeneity with respect to the underlying statistical surface [9]. In the case of
dasymetric mapping, the cartographer may be required to make both objective and subjec-
tive decisions with regard to the division of data into boundaries, leading to the inevitable
potential for human error [9, 29]. It is recognized amongst cartographers, however, that
any such error may be offset by the additional information offered by the technique [29],
and this is also true of Weighted Redistribution, which will not return a result that is quan-
tifiably “correct” at the level of the individual data point, but which may reveal valuable
information about the overall distribution of those data points within the context of their
dataset.

Furthermore, each of the redistributed data-points will be represented by a distribu-
tion of values indicating “likelihood” of location as opposed to discrete point objects. This
approach serves to better represent the spatially ambiguous nature of the true location of
the point, as opposed to merely “guessing” a precise point in space, or generalizing to
an entire area. The effect of this algorithm is demonstrated by case study using a sample
dataset collected from Twitter relating to the highly publicized wedding of the Duke and
Duchess of Cambridge, which took place in 2011. Whilst the examples used within this
paper will therefore relate specifically to PG data located within Great Britain and collected
from Twitter, the proposed algorithm is equally applicable to PG data from any source, or
global location.

2 Methodology

Data returned from a geocoder will typically be divided into a number of distinct scales,
ranging from the country or even continent level, down to street level. In accordance with
the terminology dictated by Gibson et al. [12], these distinct scales will be referred to as
“levels” hereafter. The number of levels that are exhibited within a given geocoded data
point is simply a function of the scale to which it could be georeferenced. Data can easily
be generalized to a higher level in the hierarchy (e.g., from town to country), but cannot be
artificially enhanced to a lower level in the hierarchy (e.g., from country to town), as the
required information (i.e., which town the data point should be attributed to) is unknown.
The comparison of data at different scales is the fundamental cause of the “false hotspot”
issue to which this paper refers.

The proposed algorithm iterates through every level within the dataset, every adminis-
trative area within each level, and every data point within each administrative area in order
to intelligently redistribute them within their enclosing administrative area (the polygon at
the given level to which they belong) based upon the parameters and weighting surface
provided by the user. Rather than claiming to redistribute each individual point to its “cor-
rect” location (which would be impossible and untestable), this process moves each point
to a “likely” location which, across a large dataset, will contribute to a pattern that is more
representative of the “real” patterns in phenomena than the “raw” PG dataset (which suf-
fers from “false hotspots”). Once relocated in this way, each data point is then represented
as a distribution of values on a raster output surface based around the new “seed” location,
with each cell in the distribution denoting the “likelihood” of a data point being located at
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any point within it. The effect of this approach is to better reflect likely “true” patterns in
the data, and so prevent the formation of “false hotspots” due to the comparison of multi-
scale geocoded point data.

Weighted Redistribution requires two user variables and three input datasets. The user
variables are a positive integer w, which determines the influence of the weighting surface
over the results and a value s of between 0 and 1, which represents the level of spatial am-
biguity in the dataset. The input datasets are a set of points at each level for redistribution,
a set of administrative boundaries for each level, and a weighting surface. The algorithm
is given as pseudo-code in Figure 2, and for the purposes of this project has been built into
a Java application using the GeoTools library (http:�geotools.org).

Algorithm: Weighted Redistribution (w, s, pointData, weightingSurface, administrativeAreas):

where:
w = [user defined] desired influence of weighting surface
s = [user defined] desired level of spatial ambiguity
pointData = the input point dataset to be redistributed
weightingSurface = [user defined] raster data
administrativeAreas = [user defined] polygons for relevant administrative areas at each “level”

outputSurface = new RasterDataset(. . . )
for each level in administrativeAreas as level:

for each administrativeArea in level as admin:
centroid = [get the geometric centroid of admin] (Standard Geographical Operation)
br = [get the bounding radius of admin] (Standard Geographical Operation)
points[] = [get all data points from pointData within admin] (Standard Geographical Operation)
for each point in points[] as p:

for i = 0 to i < n:
do until p[i] is within admin: (Standard Geographical Operation)

p[i] = [random point within br]
loop
value = [value from weighting surface at p[i]]
if value > max then:

max = i
end if

next i
point = p[max]
r = [based upon the geometric area of admin and variable s] (Equation 1)
for each cell in distribution [radius r around point p]:

cell = [calculate cell value in distribution] (Equation 2)
next cell
[add distribution to outputSurface]

next p
next admin

next level
return outputSurface

Figure 2: A pseudo-code representation of the proposed algorithm for Weighted Redistri-
bution.

For each administrative area, all of the points at the corresponding level that are ge-
ometrically “within” it must be extracted. This type of spatial query is standard within
geographical software and software libraries (including GeoTools), and so does not war-
rant specific discussion within this methodology. The geometric centroid and bounding
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radius for that administrative area are then calculated as illustrated in Figure 3a, and are
used to select w random locations within the administrative area to be evaluated against the
weighting surface, as illustrated in Figure 3b, which are determined by selecting a random
distance d between 0 and the bounding radius, and a random azimuth a. The “random”
numbers used in this implementation are returned from the standard Java Random() class,
which returns pseudo-random numbers at an approximately uniform distribution within
the specified range. The coordinates are then calculated for a point at distance d and az-
imuth a from the centroid using simple trigonometry, and assessed as to whether or not
they are located within the parent polygon. If so, then the coordinates become one of the
w locations; if not, then the point is discarded. Finally, each of the w locations is evaluated
against the weighting surface, as illustrated in Figure 3c, and the one with the greatest
weighting value becomes the new “seed” location for that point, as illustrated in Figure 3d.

A distribution is constructed around the selected seed location, based upon the premise
that there is no way of knowing what specific location within a given administrative area
the PG data point was intended to refer to, and so a discrete point may not be the most
appropriate representation for it. Each cell in the distribution represents a value of between
1 (at the seed location itself), and 0 (at distance r from the seed location), which serves to
represent the “likelihood” of that cell containing the correct location of that data point. The
radius r is computed from the radius of a circle equal in area to the administrative area and
the user variable s:

r =

√
As

π
(1)

where A is the area of the parent polygon of the seed. The value v of each cell in the
distribution is therefore computed as a linear radial distance from the seed location, scaled
between 1 and 0:

v = 1−
√
(seedx − cellx)2 + (seedy − celly)2

r
(2)

where r is the radius determined from the input variable s. The assignment of values to
the distribution is illustrated in Figure 4 for clarity. The distribution is then added to an
output surface that, in the case of the Java application created for this project, is written to
a GeoTiff file.

As already discussed, the intention of Weighted Redistribution is not to place each indi-
vidual data point in its “correct” location, since any attempt to do so would be untestable
because the “correct” location of each PG data point is unknown. Rather, the intention of
this process is to identify an area within which the data point may likely be located. Whilst
this is not useful for a single or even a few PG data points; when applied across an entire PG
dataset containing thousands or millions of data points, likely spatial patterns in the data
may be inferred to a given degree of “weighting” and “spatial ambiguity.” The effect of this
is the reproduction of patterns at a larger scale than that at which the data could originally
be geocoded, providing a pattern that may be considered overall to be more representative
of the (unknown) true patterns in the phenomena in question and thus permitting a greater
level of understanding of those patterns. The representivity of the output pattern will, how-
ever, depend upon the suitability of the weighting surface, and the appropriate selection
of variables w (weighting) and s (spatial ambiguity in the dataset) by the researcher. Given
the known low proportion of datasets that will typically exhibit direct georeferences (e.g.,
a GPS-derived coordinate pair), it may be considered in some circumstances, and for some
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Figure 3: Illustration of the identification of seed locations for Weighted Redistribution: (a)
Identification of the geometric centroid (in white) and central bounding radius (in green)
around the county of Lancashire. (b) Identification of w random locations (in black) within
the bounds of Lancashire using the central bounding radius. Locations falling outside of
the bounds are discarded. (c) Use of the weighting surface to identify which of the w
locations has the greatest value taken from the provided weighting surface. (d) Movement
of the point from its original location at the geometric centroid (in white), to the new seed
location. A distribution will be constructed about this seed location.
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Figure 4: Figure illustrating the calculation of cell values (v) for the output distribution,
where r is the distribution radius determined in Equation 1, and d is the distance from the
seed location. The calculation for the calculation of these values is given in Equation 2.

applications, that a redistributed 99% sample of the data could be more representative of
overall patterns than a directly georeferenced 1% sample.

3 Illustrative example

In order to illustrate the effect of this algorithm upon a PG dataset, it is applied here to
a database of Tweets in connection with the wedding of the Duke and Duchess of Cam-
bridge, which took place on Friday 29th April 2011 (the “Royal Wedding”), and received
significant media coverage and discussion on the social networks. For the purpose of this
exercise, only Tweets that were successfully geocoded to locations within Great Britain
were used, which amounted to 550,171 Tweets. The dataset was collected using the Twit-
ter API (http:�dev.twitter.com) and only the textual location data from within the “loca-
tion” field of the user profile were used to locate the Tweets (any GPS coordinates were
ignored). The dataset was geocoded by simply feeding the “location” text directly to
the Yahoo! PlaceFinder online geocoding service (http:�developer.yahoo.com), and the re-
sults were loaded into a relational database. The sample data exhibited 4 levels: coun-
try (38,701 Tweets), county (40,905 Tweets), town/city (409,911 Tweets), and “better” than
town/city (60,654 Tweets). Administrative boundaries for each of these levels were used
as the “boundary” data; with a simple surface of population density constructed from 2001
census data to act as the weighting surface. This population surface has not been filtered
or weighted to reflect the demographic distribution of Twitter users, though this may be
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an appropriate approach for some analyses. A detailed discussion of the Tweet dataset,
the manner in which it was collected, and the construction of the weighting surface have
not been included here, as they merely represent a sample data for the illustration of the
proposed algorithm, and as such are not of material importance to this work.

The Tweet data was processed using the above algorithm, with s values of 0.001, 0.01,
and 1 for country, county, and “town and better” respectively; and a w value of 20 was
used for all levels. These values were chosen based upon the perceived spatial ambiguity
inherent within the dataset, the variation in size of the various administrative areas, and the
desired influence of the weighting surface. These decisions were made subjectively by the
authors, based upon a detailed exploration of the impact of adjustments to each variable
with a subset of this dataset (referred to later in this paper, and illustrated in Figure 6). As
with many similar GIS algorithms (such as kernel density estimation, or clustering for ex-
ample), the specific input variables can rarely be fully justified, which is discussed further
later in this paper. The dataset is shown prior to processing in Figure 5a and post process-
ing in Figure 5b. Visual comparison between the two figures illustrates the significant effect
that Weighted Redistribution has upon a dataset, with the data in Figure 5b representing
a smooth surface, as opposed to the collection of multi-scale hotspots that are evident in
Figure 5a. All of the “false hotspots” evident in Figure 1b and Figure 5a have been redis-
tributed to areas of appropriate population within their respective administrative areas.
This is evident, for example, in the case of Manchester (labeled in Figure 1b), which has
shifted from a single “false hotspot” at the centroid of the city to a reflection of the urban
extents of the city and surrounds; and in the case of England, where the misleading hotspot
at its center (labeled in Figure 1b) has been completely removed to other more likely loca-
tions within the country. The removal of the “false hotspots” has also significantly lowered
the range of values contained within the surface, allowing a much more effective use of
the color ramp, which reveals patterns of activity in areas that were once hidden by the
magnitude of values contained within the “false hotspots.”

The use of distributions as opposed to discrete points has allowed the formation of a
surface of values indicating the likelihood of Tweet activity relating to the “Royal Wed-
ding” originating from any given point within the study area. As the weighting surface for
this illustrative example was population density, the probability is effectively derived from
the spatial coincidence of Tweet activity as recorded in the database (erroneously located at
the centroid of the parent polygon), and areas of high population density within the parent
polygon. The patterns given in Figure 5b are therefore far more useful as an approxima-
tion of true patterns of activity than those patterns evident in the “raw” data (Figure 5a;
Figure 1) as, although neither could be described as “correct,” they reflect real patterns of
related phenomena (population density in this case), as opposed to non-relevant geometric
approximation. In the case of data such as that from Twitter, this algorithm could therefore
productively be applied to any data intended for the identification of patterns of activity.
Examples could include attempts to map spatial patterns in Tweets relating to a given topic
(such as the “Royal Wedding,” “Olympics,” or “World Cup” for example); or in the seman-
tic properties of the text contained within those Tweets (such as evidence of feelings such as
happiness or sympathy, or linguistic devices such as spatial variation in the use of certain
colloquialisms for example).
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Figure 5: (a) A “raw” density map of geocoded Twitter activity relating to the wedding of
the Duke and Duchess of Cambridge, exhibiting a pattern of multi-scale “false hotspots.”
(b) The result of performing Weighted Redistribution upon the same dataset, exhibiting a
smooth surface representing a likely pattern in the data. Both datasets displayed using a
5-color, 2% clip histogram stretch, and (a) was produced using a 18 km × 18 km density
kernel at 1 km resolution.

4 Discussion and conclusions

Passively geolocated (PG) data is a vast and important source of spatial data that continues
to grow alongside the web, digital text resources and the social networks. Advances in nat-
ural language processing permit an increasing depth of understanding to be obtained from
many forms of such text-based data, but suffer from the variety and inexplicit nature of the
geographic scale at which the spatial component of each data point is produced. Weighted
Redistribution represents a technique by which patterns in PG data may be reconstructed
and visualized whilst avoiding the introduction of “false hotspots.” In this way, these pat-
terns may be explored using more representative visualizations than would be possible
using only directly georeferenced data, and without the erroneous patterns inherent in PG
datasets. Whilst the examples contained within this paper have been based around data
collected from Twitter in the UK, the algorithm is equally applicable to any PG dataset,
from any source, and relating to any other country or part of the world.

As with other raster-based GIS techniques, such as kernel density estimation for exam-
ple, the output of Weighted Redistribution is heavily dependent upon the user. As such, an
understanding of the algorithm, and particularly the effect of these variables, is required
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before a meaningful visualization may be created using Weighted Redistribution. Figure 6
provides an illustration of the effect that adjustments in the variables s (spatial ambiguity
in the dataset), and w (weighting) have upon Tweets collected in the county of Lancashire
in the UK. A matrix is presented with a number of Weighted Redistribution layers created
from the same dataset, but with different values for the two variables, with w increasing
along the x-axis, and s increasing along the y-axis. The effects of these adjustments are very
clear: with highly randomized datasets to the left of the matrix (where data is spread across
the whole county), and highly population-weighted datasets to the right (where data is con-
centrated towards population centers). Similarly, the matrix exhibits relatively clear data
boundaries towards the bottom of the matrix, and more ambiguous boundaries towards
the top. Another clear pattern revealed by this figure is the inherent conflict between the
two variables, with the effect of adjustments in w at the top (most spatially ambiguous)
row of the matrix greatly diminished in effect when compared to the bottom (least spa-
tially ambiguous) row. The selection of appropriate values for a given dataset is likely to
depend upon factors such as confidence in the administrative boundary data and weight-
ing surface, as well as the goals of the study, and in reality will likely be arrived at through
a process of trial and error, rather than specific rules or calculations. Users of the Weighted
Redistribution algorithm or software are encouraged to experiment widely with the input
variables and weighting surface, and to vary them at each level, not just for each dataset.

The construction of an appropriate weighting surface will also have a significant effect
upon the quality of the output, with the magnitude of its effect proportional to the variable
w. If an inappropriate weighting surface is used (for example, one based upon incomplete,
unsuitable or irrelevant data), then this will lead to the formation of unrealistic patterns in
the data, and as such will have a dramatic impact upon Weighted Redistribution process.
It is vital, therefore, that an appropriate level of consideration is given to the creation of
weighting surfaces that are representative of the issues relevant to the data: population
distribution, demographic data, proximity to a given phenomenon, or habitat suitability for
example. It is also important that the weighting surface data is at an appropriate resolution
to allow sufficiently detailed redistribution of data points. A city-scale redistribution across
a weighting surface with a resolution of 1 km, for example, would not yield useful results,
as there would be insufficient variation in weighting values across the study area to form
meaningful patterns. At the country scale, however, a weighting surface at 1 km resolution
would provide an excellent level of detail and variation, and permit very detailed patterns
to form.

Unsuitable boundary data may fall foul of issues similar to the Modifiable Aerial Unit
Problem (MAUP), described by Openshaw [26]. This is because the redistribution is heavily
influenced by the spatial properties of each data point’s enclosing polygon. Given that ad-
ministrative boundary data typically change over time, and do so with relative frequency,
the researcher must be careful to select boundary data that not only represents the appro-
priate scale as closely as possible (town, county etc.), but also the temporal nature of that
geography. The town of Beverley in the UK, for example was, prior to 1996, located within
the now abolished county of “Humberside,” but has since been reassigned to the county of
the “East Riding of Yorkshire.” As such, different boundary data would need to be used in
order to perform Weighted Redistribution on a dataset collected prior to, and since, 1996.
For datasets with a large temporal variation, therefore, it may be necessary to subdivide the
data temporally in order to reflect changes in administrative boundaries, process each sub-
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Figure 6: Weighted Redistribution surfaces for Tweets collected within Lancashire, with
a range of values for w (weighting), and s (spatial ambiguity). The effect of an increased
influence of the weighting surface from left to right (reducing randomness in the resulting
patterns), and an increased level of spatial ambiguity from bottom to top (reducing the
level of detail in the resulting patterns) are clearly visible.
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division individually, and then aggregate the results in order to produce the final output
data.

Weighted Redistribution could be described as an attempt to “get something for noth-
ing,” whereby it is attempting to introduce an increased level of detail into data for the
identification of spatial patterns. Whilst this is to some extent true, the selection of an ap-
propriate weighting surface and values for w and s can lead to an improvement in the rep-
resentivity of the dataset, making it reflect a likely spatial distribution of the phenomenon
in question which, across a large dataset, can provide a better representation of reality than
the “raw” input data. It could be argued that it is not possible to quantify the effect of
this algorithm, as the “true” location for each data point is unknown, and the locations
returned from the geocoder are known to be incorrect due to the inherent geometric sim-
plification. As previously discussed, however, this approach may be seen as analogous to
other cartographic techniques such as dasymetric mapping, whereby resulting data may
not necessarily be “correct,” but any errors are offset by the information that the technique
reveals [26]. Nevertheless, it is possible to demonstrate the effect of the algorithm with an
exercise such as is demonstrated in Figure 7. These data represent the circa 1% of the Tweets
collected associated with the Royal Wedding that were directly georeferenced using a GPS
receiver. Figure 7 demonstrates the effect of “reducing” the location of each individual
data point to the centroid of their respective country (top row) and county (bottom row) in
order to simulate the locational precision of PG data, and then redistributing those data us-
ing the algorithm described in this paper (using the same input data and parameters as per
Figure 5). It is clearly apparent in both cases that the redistributed data represent the true
patterns in the data more effectively than do the simulated PG data, thus demonstrating
the benefit of this algorithm for the visualization of spatially ambiguous point data.

Though the proposed algorithm is intended as a solution to the visualization of pas-
sively georeferenced data, the authors consider that there is further work that could be
done in this area. For instance, there could be some benefit to an investigation into the
relationship between the input variables and the size and shape of administrative areas,
and how this could be incorporated into the algorithm without sacrificing usability. This
is beyond the scope of this work, but could certainly lead to further developments in the
application of this algorithm. Other questions to ask of this work in the future include
whether or not these visualization techniques could be usefully applied to areas beyond
cartographic visualization, such as decision support for example. It is likely that the pat-
terns produced by this algorithm will be of some use in the identification of patterns in
phenomena across a whole population or dataset, for example, which could contribute
towards decision-making, but such approaches would need to be validated prior to appli-
cation.

Whilst it may be argued that an increasing amount of data is now being “geotagged,”
rendering techniques such as this outdated, it is important to note that, thus far, uptake
of geotagging appears to be slow, with only circa 1% of the Twitter data collected for this
project (in 2011) associated with a coordinate pair (a similar figure was reported by Craglia
et al. [3] and Dredze et al. [7]). To use the geotagged data alone therefore, would result in the
discarding of circa 99% of the dataset, which could be viewed as an unacceptable amount
for a representative visualization. Given the likelihood that a mobile-enabled platform and
pioneer of geotagging such as Twitter will see uptake far before other more traditional
forms of content, and that this uptake will likely introduce spatial biases of its own, tech-
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Figure 7: An illustrative exercise, whereby directly georeferenced data are generalized to
the centroid of their respective country and county administrative area centroids in order to
replicate the effect of PG data, and then redistributed using the algorithm described within
this paper. This demonstrates the benefit of the redistributed data over the generalized.
Maps in (c) are displayed using a 5-color, 2% clip histogram stretch, and the “Geolocated”
and “Simulated PG” figures were produced using an 8 km × 8 km density kernel at 2 km
resolution.

niques such as Weighted Redistribution are invaluable to enable the researcher to identify
and explore spatial patterns in this data.

Furthermore, even if the vast majority of data is eventually geotagged at the point of
creation (including web-based information, social media, books, media content, and so on)
there will still be an enormous amount of historical data, including much of that produced
today, that would still require methods such as Weighted Redistribution in order that pat-
terns in the data might be revealed. Weighted Redistribution represents a new approach
to the processing and visualization of PG data, preventing the requirement for researchers
to choose between an accurate yet very small (circa 1%) and potentially unrepresentative
sample, and a much larger (circa 99%) sample prone to “false hotspots.” As such, this algo-
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rithm provides new opportunities for researchers to visualize the spatial patterns in such
datasets, allowing a greater level of understanding of those patterns than was previously
achievable.
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