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Abstract: This paper gives a new possible realization of the oblique Lambert Azimuthal
Equal-Area map projection for the ellipsoid of revolution. Unlike the realization available
in previous literature, the authalic sphere used for the derivation has very low distortion
at the neighborhood of a freely chosen standard parallel. For this reason, the distortions
caused by this authalic sphere can be neglected. It is shown that this realization gives
a better approximation of the azimuthal equal-area mapping of the sphere in terms of
angular distortions. Interesting side results of the study include a numerically stable inverse
formulation for the azimuthal equal-area map of the sphere and mathematical connections
between the Gaussian conformal sphere and the low-distortion authalic sphere.
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1 The purpose of this study
Thematic maps usually require equal-area mappings. Several methods of cartographic vi-
sualization can be misleading if not applied on an equivalent map projection [6]. Especially
statistical data are very sensitive to areal distortions.

To fulfil this need, plenty of equal-area map projections have been developed [10]. One
of the most popular equivalent mappings for regional maps is the Lambert Azimuthal
Equal-Area (hereafter LAEA) projection. It is usually recommended for circular areas [9].
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If the center of the area is not at one of the poles, we should use it in the oblique aspect. A
notable example is the coordinate system LAEA-EU registered as EPSG:3035 [3].

Oblique map projections of the sphere are created by rotating the graticule and placing
a metapole (or pseudopole) onto the center of the area [7, 14]. However, the accuracy of
the terrestrial sphere is insufficient for medium-scale maps. The ellipsoid of revolution
does not have the same degree of symmetry as the sphere, it is impossible to rotate the
graticule on its surface. Thus, oblique map projections of the ellipsoid need special care.
We should note that while the oblique aspect of a spherical mapping is always unique, this
is not the case for the ellipsoid of revolution [14]. For example, the oblique stereographic
map of the ellipsoid has three different known realizations: the double stereographic [13],
the Roussilhe stereographic [8], and the Thomas stereographic [10], not to mention the
possibility to invent new ones.

As far as the author is concerned, only Reference [10] have listed a possible formulation
for an oblique LAEA of the ellipsoid. He developed that as a double mapping through
an authalic sphere. However, that formulation has two drawbacks. First, the authalic
sphere used by Snyder has some angular distortions at the origin. He corrected for it by
an affine transform on the final map, but even Snyder admitted that with this step the
resulting map is slightly non-azimuthal. We will see that this non-azimuthality influences
the angular distortion pattern of the map. Second, the inverse formulae given by Snyder
are unnecessarily complicated even for the spherical variant. Furthermore, neither Snyder
nor any later study have listed formulae for the distortions of the ellipsoidal LAEA, so every
distortion analysis apparently used spherical formulae.

This paper has three major achievements over previous literature:
1. A simpler and more robust formulation is given for the inverse oblique LAEA projec-

tion, which can be used as a drop-in replacement for Snyder’s formulae.
2. A new low-distortion authalic sphere is developed based on the idea of Gauß [2].
3. It lists analytical formulae for the distortions of the ellipsoidal oblique LAEA.

2 Oblique azimuthal equal-area projection of the sphere
Reference [10] lists the direct and inverse formulae of the oblique LAEA of the sphere.
The inverse formulae are, however, unnecessarily complicated, successively apply trigono-
metric and inverse trigonometric functions. As this may waste computing resources and
introduces numerical unstability near the origin of the coordinate system, a simpler form
of the inverse is developed here. To develop this formulation, intermediate steps are used
from the derivation of direct formulae. Therefore, the derivation of the direct formulae in
Reference [10] is repeated here.

Let us introduce the following polar coordinate system:
𝑥 = 𝜚 sin𝜆′ (1)
𝑦 = −𝜚 cos𝜆′ (2)

Here 𝜚(𝜑′) is the radius of metalatitude 𝜑′, and polar angle 𝜆′ is the metalongitude.
Metalatitude and metalongitude (also known as pseudolatitude and pseudolongitude) are
identical to latitude and longitude in the normal aspect, and are calculated using a spatial
rotation if the aspect of the map projection is oblique [7]:

sin 𝜑′ = sin 𝜑 sin 𝜑0 + cos 𝜑 cos 𝜑0 cos(𝜆 − 𝜆0) (3)
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cos 𝜑′ sin𝜆′ = cos 𝜑 sin(𝜆 − 𝜆0) (4)
cos 𝜑′ cos𝜆′ = − sin 𝜑 cos 𝜑0 + cos 𝜑 sin 𝜑0 cos(𝜆 − 𝜆0) (5)

The formulation above defines a coordinate system on the sphere with the metapole
located at geographic coordinates 𝜑0 ,𝜆0, and its prime metameridian points to South. The
direction of the prime metameridian is insignificant in the context of this study, as it only
rotates the resulting map on the plane.

If we are on a sphere of radius 𝑅, then the formula of the LAEA in normal aspect is [10]:

𝜚 = 2𝑅 sin
(
π

4 − 𝜑′

2

)
=
√

2𝑅

√
2 sin2

(
π

4 − 𝜑′

2

)
=
√

2𝑅
√

1 − cos
(
π

2 − 𝜑′
)

(6)

Thus, we will use later:
𝜚 =

√
2𝑅

√
1 − sin 𝜑′ (7)

Multiplying and dividing by
√

1 + sin 𝜑′:

𝜚 =
√

2𝑅
cos 𝜑′√

1 + sin 𝜑′
(8)

Substituting this into (1) and (2):

𝑥 =
√

2𝑅
cos 𝜑′ sin𝜆′√

1 + sin 𝜑′
(9)

𝑦 =
√

2𝑅
− cos 𝜑′ cos𝜆′√

1 + sin 𝜑′
(10)

Applying formulae (3) to (5):

𝑥 =
√

2𝑅
cos 𝜑 sin(𝜆 − 𝜆0)√

1 + sin 𝜑 sin 𝜑0 + cos 𝜑 cos 𝜑0 cos(𝜆 − 𝜆0)
(11)

𝑦 =
√

2𝑅
sin 𝜑 cos 𝜑0 − cos 𝜑 sin 𝜑0 cos(𝜆 − 𝜆0)√

1 + sin 𝜑 sin 𝜑0 + cos 𝜑 cos 𝜑0 cos(𝜆 − 𝜆0)
(12)

To develop the inverse, we should first note from equations (1), (2), and (7) that:

𝑥2 + 𝑦2 = 𝜚2 = 2𝑅2 (1 − sin 𝜑′) (13)

Let us introduce the auxiliary variable 𝑡:

𝑡 =
𝑥2 + 𝑦2

2𝑅2 (14)

From (13):
sin 𝜑′ = 1 − 𝑡 (15)

Using (3) and rearranging:

cos 𝜑 cos(𝜆 − 𝜆0) =
1 − 𝑡 − sin 𝜑 sin 𝜑0

cos 𝜑0
(16)
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Substituting the two previous equations into (12):

𝑦 =
√

2𝑅
sin 𝜑 cos 𝜑0 − sin 𝜑0

1−𝑡−sin 𝜑 sin 𝜑0
cos 𝜑0√

2 − 𝑡
=
√

2𝑅
sin 𝜑 − (1 − 𝑡) sin 𝜑0√

2 − 𝑡 cos 𝜑0
(17)

This is easily solved for 𝜑:

𝜑 = arcsin

[
𝑦
√

2 − 𝑡 cos 𝜑0√
2𝑅

+ (1 − 𝑡) sin 𝜑0

]
(18)

Note that apart from the trigonometric functions of 𝜑0 (which has to be computed only
once for a specific mapping), only one trigonometric function is needed to solve 𝜑 for each
point. Reference [10] needed 3 trigonometric functions for each point. We should also note
that there is now no division by 𝜚 , which resolves the numerical unstability of Snyder’s
equations close to the origin.

We can do the same substitution into (11) (note that sin𝜆 = tan𝜆 cos𝜆):

𝑥 =
√

2𝑅
tan(𝜆 − 𝜆0) 1−𝑡−sin 𝜑 sin 𝜑0

cos 𝜑0√
2 − 𝑡

(19)

Using solution (18) for 𝜑:

𝑥 =
√

2𝑅
tan(𝜆 − 𝜆0)

(
1 − 𝑡 −

[
𝑦
√

2−𝑡 cos 𝜑0√
2𝑅

+ (1 − 𝑡) sin 𝜑0

]
sin 𝜑0

)
cos 𝜑0

√
2 − 𝑡

=

tan(𝜆 − 𝜆0)
[√

2𝑅(1 − 𝑡) cos 𝜑0 − 𝑦
√

2 − 𝑡 sin 𝜑0

]
√

2 − 𝑡
(20)

Solving for 𝜆:

𝜆 = 𝜆0 + arctan 𝑥
√

2 − 𝑡√
2𝑅(1 − 𝑡) cos 𝜑0 − 𝑦

√
2 − 𝑡 sin 𝜑0

(21)

Again, the number of trigonometric functions needed for each point is reduced from
three to one compared to Snyder’s formulation. The formulae of Reference [10] would
result in division 0/0 near the origin, the formulae listed here do not have this problem.
Please note that function arctan should be implemented using function atan2 in common
programming languages.

The inverse formulation listed here should always be possible to evaluate, theoretically
no square roots of negative numbers and no division by zero (assuming the application
of function atan2) is possible in the domain of the full map (0 ≤ 𝑡 ≤ 2). However, due to
floating-point errors, 𝑡 might be slightly greater than 2. In this case, 𝜑 = −𝜑0 and𝜆 = 𝜆0±π.
Equation (21) is numerically unstable close to 𝜑 = ±π/2 (as through 𝑥 = 0, 1 − 𝑡 = ± sin 𝜑0,
and 𝑦 = ±

√
2𝑅 cos 𝜑0/

√
2 − 𝑡, this results in 0/0), but in this case, longitude is not defined

anyway.
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3 General authalic sphere

To develop a map projection in transverse or oblique aspect, the most convenient possibility
is to use a metageographic (pseudogeographic) coordinate system [14], just as we have done
it previously. However, an ellipsoid of revolution does not have a full rotational symmetry as
the sphere: its graticule cannot be rotated on its surface. It is possible to construct oblique
ellipsoidal map projections by generalizing the properties of spherical map projections,
a good example for this method is given by Reference [4] for an ellipsoidal gnomonic
projection. This has the advantage that the distortion characteristics of the resulting map
will exactly follow our expectations. However, the design of such map projections is usually
not straightforward.

A popular alternative is to use a double mapping, that is, we first map the ellipsoid onto
an auxiliary sphere and use the oblique map projection from the sphere to the plane. The
advantage of this method is that it is easy to develop. However, it is impossible to map the
ellipsoid of revolution onto a sphere without distortion. These distortions will influence
the distortion pattern of the resulting map projections. To answer this problem, multiple
auxiliary spheres were created [1], a conformal one for conformal maps, an authalic one
for equal-area maps, and a rectifying one for equidistant maps. We should note that the
rectifying sphere is equidistant only along meridians, which already shows a limitation of
this approach.

These auxiliary spheres were created for a global scale: the Equator is mapped to the
Equator, poles are mapped to the poles on the sphere. This usually also restricts the radius
of the auxiliary sphere and the linear distortions cannot be adjusted. Gauß was the first to
create an auxiliary (conformal) sphere for regional use [2]. He demonstrated that the local
distortions of auxiliary spheres can be significantly reduced around a freely chosen parallel,
if we relax the condition that the full surface of the ellipsoid must be mapped exactly to the
full surface of the sphere. Such a low-distortion conformal sphere is used now for, among
others, the official map projections of the Netherlands, Switzerland, Czechia, and Hungary,
which demonstrate the usefulness of this approach. However, no low-distortion authalic
sphere has been developed yet.

To avoid confusion, uppercase Greek letters 𝛷,𝛬 will denote geographic coordinates
on the ellipsoid and their lowercase versions 𝜑,𝜆 are used on the authalic sphere. 𝑎 and 𝑏
stand for the major and minor semi-axes of the ellipsoid. 𝑁(𝛷) is the prime-vertical radius
of curvature, 𝑀(𝛷) is the meridional radius of curvature, 𝑐 is the polar radius of curvature,
first and second eccentricity is denoted by 𝑒 and 𝑒′:

𝑒 =

√
𝑎2 − 𝑏2

𝑎2 (22)

𝑒′ =

√
𝑎2 − 𝑏2

𝑏2 =
𝑒√

1 − 𝑒2
(23)

𝑐 = 𝑁(90°) = 𝑀(90°) = 𝑎√
1 − 𝑒2

(24)

𝑣(𝛷) =
√

1 − 𝑒2 sin2 𝛷√
1 − 𝑒2

=

√
1 + (𝑒′)2 cos2 𝛷 (25)
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d𝑣
d𝛷 =

−2(𝑒′)2 cos𝛷 sin𝛷

2
√

1 + (𝑒′)2 cos2 𝛷

= tan𝛷
1 − 𝑣2(𝛷)

𝑣(𝛷) (26)

𝑁(𝛷) = 𝑎√
1 − 𝑒2 sin2 𝛷

=
𝑐

𝑣(𝛷) (27)

𝑀(𝛷) =
𝑎
(
1 − 𝑒2)(

1 − 𝑒2 sin2 𝛷
)3/2 =

𝑐

𝑣3(𝛷) (28)

We will assume that parallels are mapped to parallels, and meridians to meridians on
the sphere. Therefore, lunes of the ellipsoid must be mapped to lunes on the sphere. Their
area must be equal to each other (the sphere must be authalic) and the area of the lune
is a linear function of the longitude difference both on the sphere and on the ellipsoid of
revolution. Therefore:

𝜆 = 𝑛(𝛬 − 𝛬0) (29)

Here, 𝑛 > 0 and 𝛬0 allows changing the Prime Meridian on the authalic sphere. It is
recommended that 𝛬0 is the longitude of the origin so that we can use 𝜆0 = 0 on the sphere.

We will next calculate the linear scales ℎ and 𝑘 along meridians and parallels as the ratio
between infinitesimal lengths on the sphere of radius 𝑅 and the ellipsoid:

ℎ = lim
Δ𝛷→0

𝑅Δ𝜑

𝑀(𝛷)Δ𝛷 =
𝑅

𝑀(𝛷)
d𝜑
d𝛷 (30)

𝑘 = lim
Δ𝛬→0

𝑅 cos 𝜑Δ𝜆

𝑁(𝛷) cos𝛷Δ𝛬
=

𝑅𝑛 cos 𝜑
𝑁(𝛷) cos𝛷

(31)

Above, we used from (29) that the derivative of 𝜆 with respect of 𝛬 is 𝑛. Because
meridians and parallels are perpendicular both on the ellipsoid and the sphere, they are
principal directions [11]. Therefore, the sphere is authalic if ℎ𝑘 = 1, that is:

d𝜑
d𝛷 =

𝑀(𝛷)𝑁(𝛷) cos𝛷
𝑅2𝑛 cos 𝜑

(32)

Separating variables, integrating it and taking the arcsine of both sides:

𝜑 = arcsin
[
𝑎2 (1 − 𝑒2)

𝑅2𝑛

(
1
2 · sin𝛷

1 − 𝑒2 sin2 𝛷
+ 1

4𝑒 ln 1 + 𝑒 sin𝛷
1 − 𝑒 sin𝛷

)
+ 𝜘

]
(33)

𝜘 is a constant of integration. Note that we get the usual authalic sphere by choosing
𝜘 = 0, 𝑛 = 1, and 𝑅 equal to the authalic radius. To get the inverse formula, (29) is solved
easily for 𝛬:

𝛬 =
𝜆
𝑛
+ 𝛬0 (34)

(33) cannot be inverted analytically. First, we transform the equation to:(
sin 𝜑 − 𝜘

)
𝑅2𝑛

𝑎2(1 − 𝑒2) − 1
2 · sin𝛷

1 − 𝑒2 sin2 𝛷
− 1

4𝑒 ln 1 + 𝑒 sin𝛷
1 − 𝑒 sin𝛷

= 0 (35)

www.josis.org

http://www.josis.org


LOW-DISTORTION AUTHALIC SPHERE FOR OBLIQUE LAEA 123

𝛷 can now be solved by the Newton–Raphson formula:

𝛷 = 𝛷 + 1 − 𝑒2 sin2 𝛷
cos𝛷

[ (
sin 𝜑 − 𝜘

)
𝑅2𝑛

𝑎2(1 − 𝑒2) − 1
2 · sin𝛷

1 − 𝑒2 sin2 𝛷
− 1

4𝑒 ln 1 + 𝑒 sin𝛷
1 − 𝑒 sin𝛷

]
(36)

Where substitute an initial guess for 𝛷 into the right-hand side to get a better estimate
and repeat the calculation until the correction is sufficiently small. Discussion on the initial
guess and convergence is given later. Please note that a series representation of the inverse
like it was done by Reference [1] is not possible: parameters 𝑅, 𝑛, and 𝜘 varies with the area
of interest.

4 Parameters for a low-distortion authalic sphere
We have yet to determine the parameters 𝑛 and 𝜘. Furthermore, as we relaxed the condition
that the full ellipsoid is mapped to the full sphere, 𝑅 is not the authalic radius, but it can
be adapted to our region of interest. Following Reference [2], we shall pick an arbitrary
latitude 𝛷0. This will be a standard parallel of our auxiliary sphere (ℎ = 𝑘 = 1). In addition,
we expect that the first two derivatives of linear scales ℎ and 𝑘 with respect to 𝛷 vanish
at 𝛷0, that is, the distortions in the small neighborhood of 𝛷0 are effectively zero. This
will make our authalic sphere almost distortion-free locally, so the distortions of the double
mapping will almost solely be controlled by the sphere-to-plane mapping.

As ℎ = 1/𝑘, if the derivatives of 𝑘 vanish at a point then the derivatives of ℎ must also
vanish. Therefore, ℎ is not considered at all during the calculation. The spherical image of
𝛷0 is denoted by 𝜑0. At latitude 𝛷0, 𝑘 = 1. Using (31) for 𝑘:

𝑣(𝛷0)𝑅𝑛 cos 𝜑0

𝑐 cos𝛷0
= 1 (37)

That is:
𝑅 =

𝑐 cos𝛷0
𝑣(𝛷0) 𝑛 cos 𝜑0

(38)

The first derivative of 𝑘:

d𝑘
d𝛷 = 𝑅𝑛

d𝑣
d𝛷 cos 𝜑 cos𝛷 − 𝑣(𝛷) sin 𝜑

d𝜑
d𝛷 cos𝛷 + 𝑣(𝛷) cos 𝜑 sin𝛷

𝑐 cos2 𝛷
(39)

d𝜑/d𝛷 is given in (32) and d𝑣/d𝛷 is given in (26). This simplifies to:

d𝑘
d𝛷 =

𝑛𝑅 cos 𝜑 sin𝛷

𝑐 𝑣(𝛷) cos2 𝛷
− 𝑐 tan 𝜑

𝑅 𝑣3(𝛷) (40)

This must be zero at 𝛷0. Substituting (38) for 𝑅:

tan𝛷0
𝑣2(𝛷0)

− 𝑛 sin 𝜑0

𝑣2(𝛷0) cos𝛷0
= 0 (41)

Which is solved for 𝑛:
𝑛 =

sin𝛷0
sin 𝜑0

(42)
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To calculate 𝜑0, we need first to compute the second derivative of 𝑘. It can be done in
the same way as the first derivative. However, the result is not listed here as the formula is
excessively long. Nevertheless, after substituting 𝛷 = 𝛷0, using (38) for 𝑅 and (42) for 𝑛,
the second derivative gets surprisingly simple:

d2𝑘

d𝛷2

����
𝛷=𝛷0

=
1

𝑣2(𝛷0)
− tan2 𝛷0

𝑣4(𝛷0) tan2 𝜑0
(43)

As this was required previously to be zero, it follows that:

tan 𝜑0 =
tan𝛷0
𝑣(𝛷0)

(44)

Substituting (42) into (38):

𝑅 =
𝑐 tan 𝜑0

𝑣(𝛷0) tan𝛷0
(45)

So now we can use relation (44) to get the final result for 𝑅:

𝑅 =
𝑐

𝑣2(𝛷0)
=
√
𝑀(𝛷0)𝑁(𝛷0) (46)

This practically means that the radius of the auxiliary sphere is the radius of the os-
culating sphere. It is interesting that the Gaussian conformal sphere [2] results in almost
exactly the same parametrization. Given 𝛷0, (44) yields its spherical image 𝜑0. Then we
can use (46) to get 𝑅 and (42) to get 𝑛. The latter is undetermined if 𝛷0 → 0. In this case,
𝑛 →

√
1 + (𝑒′)2. Constant 𝜘 can be solved from (33) (this is the only formula that differs

from the Gaussian sphere):

𝜘 = sin 𝜑0 −
𝑎2 (1 − 𝑒2)

𝑅2𝑛

(
1
2 · sin𝛷0

1 − 𝑒2 sin2 𝛷0
+ 1

4𝑒 ln 1 + 𝑒 sin𝛷0
1 − 𝑒 sin𝛷0

)
(47)

It should be examined in a future paper, whether the low-distortion rectifying sphere
has a similar parametrization.

5 Development of the double mapping
Now, we can construct an ellipsoidal oblique LAEA as a double mapping. First, we set 𝛬0
of the authalic sphere to the desired longitude of origin (this makes it possible to blindly
use 𝜆0 = 0 during the sphere-to-plane projection). We map the latitude of origin 𝛷0 to the
authalic sphere to get 𝜑0. After computing these constants, we can map any point on the
ellipsoid to the plane by successively applying the formulae of the authalic sphere and the
spherical oblique LAEA.

The distortions of a conformal double mapping are quite easily calculated as the product
of linear or areal scales of both mappings. We are not so lucky with equal-area double
mappings, as calculation becomes non-trivial. The best bet is to use the general formulae
of Tissot [11] (note that equal-area mappings always satisfy ℎ𝑘 sin𝜗 = 1 simplifying the
original equations):

ℎ =

√(
∂𝑥
∂𝛷

)2
+
(
∂𝑦

∂𝛷

)2

𝑀(𝛷) (48)
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𝑘 =

√(
∂𝑥
∂𝛬

)2
+
(
∂𝑦

∂𝛬

)2

𝑁(𝛷) cos𝛷
(49)

𝐴 + 𝐵 =
√
ℎ2 + 𝑘2 + 2ℎ𝑘 sin𝜗 (50)

𝐴 − 𝐵 =
√
ℎ2 + 𝑘2 − 2ℎ𝑘 sin𝜗 (51)

𝜔 = 2 arcsin 𝐴 − 𝐵

𝐴 + 𝐵
= 2 arcsin

√
ℎ2 + 𝑘2 − 2
ℎ2 + 𝑘2 + 2

(52)

Here, 𝐴 and 𝐵 are the maximal and minimal linear scales, 𝜔 is the maximum angular
deviation and 𝜗 is the intersection angle between graticule lines (we do not need its value, as
it is canceled). The partial derivatives needed for the calculations were computed manually
using the chain rule. Results are listed in Appendix A.

The double mapping of Snyder [10] uses constants 𝜘 = 0, 𝑛 = 1, and 𝑅 equal to the
authalic radius. However, this authalic sphere distorts angles at the latitude of origin. This
is really unwanted, as the LAEA should be distortion-free here. Snyder recognized it and
corrected for it by an equal-area affine transform:

𝑥′ = 𝑥/𝑚 (53)
𝑦′ = 𝑚𝑦 (54)

To calculate the resulting distortions, all partial derivatives of 𝑥 must be multiplied by
1/𝑚 and derivatives of 𝑦 by 𝑚. The angular distortions are cancelled in the origin, if 𝑚 is
equal to linear scale 𝑘 of the authalic sphere, cf. Eq. (31):

𝑚 = 𝑘0 =
𝑅 cos 𝜑0

𝑁(𝛷0) cos𝛷0
(55)

Although this transformation does restore the desired conformality in the origin, it is
kind of hacky. Furthermore, the affine transform affects the azimuthality (Snyder confirms
that his version of the LAEA is slightly non-azimuthal).

A more elegant solution is proposed. We shall use the parameters of the low-distortion
authalic sphere introduced in the previous section for 𝑛, 𝜘, and 𝑅. This auxiliary sphere
has absolutely no distortion along its standard parallel. The derivatives of the linear scales,
which determine the curvature of mapped geodesics [5], are zero here (even the second
derivatives are zero). This means that azimuthality is not lost. (Strictly speaking, it is only
lost to a negligible extent, as geodesics are not mapped to perfect great circles, they are
‘only’ a third-order approximation of great circles near the latitude of origin.)

The most obvious advantage of the low-distortion authalic sphere is that it contributes
to the distortion pattern of the double mapping only to a completely negligible extent. To
demonstrate it, the author set 𝛷0 = 52°, 𝛬0 = 10°, which are the parameters of the system
LAEA-EU [3]. Then he computed maximum angular deviation 𝜔 on a unit sphere and
on ellipsoid WGS84 (the latter were computed both using Snyder’s solution and the low-
distortion sphere). Python code is available as a supplementary material. Results are listed
in Table 1 and Figure 1.

It is easy to see on the figure (especially along the central meridian) that while isolines
of the spherical estimate and the low-distortion sphere almost coincide, Snyder’s isolines
slightly deviate from them to the South. This is the result of the distortions caused by his
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Figure 1: Comparison of angular distortions in the spherical LAEA, Snyder’s double map-
ping and the double mapping through the low-distortion authalic sphere
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𝛷 𝛬 𝜔Sphere 𝜔Snyder 𝜔Low-dist

30 10 2.1228 2.0747 2.1248
42 10 0.4362 0.4149 0.4369
54 10 0.0174 0.0218 0.0175
66 10 0.8521 0.8884 0.8573
30 28 2.9002 2.8589 2.9058
42 28 1.0864 1.0685 1.0870
54 28 0.5286 0.5350 0.5273
66 28 1.2152 1.2483 1.2148
30 46 5.2255 5.1961 5.2334
42 46 3.0189 3.0074 3.0161
54 46 2.0383 2.0495 2.0329
66 46 2.2732 2.3057 2.2651

Table 1: Comparison of angular distortions in the spherical LAEA, Snyder’s double mapping
and the double mapping through the low-distortion authalic sphere (all numbers are in
degrees).

authalic sphere. The table confirms it numerically: while the angular deviations of the
double mapping through the low-distortion sphere differs less than 0.1% from a spherical
estimation even far from the origin, the difference of Snyder’s double mapping can exceed
1%.

This is not a merely theoretical point. As the distortions of double mappings are
not calculated easily (the author found no literature listing formulae for the distortions of
Snyder’s LAEA), distortions are calculated only for spherical map projections. For example,
the decision-support material of the LAEA-EU [12] includes a figure for expected angular
deviations. The author examined that map, and concluded that, based on the actual
location of isolines, angular deviations must have been calculated for the sphere and not
for the ellipsoid of revolution.

The low-distortion authalic sphere also has some disadvantages. First, as mentioned
before, its inverse does not have a simple series representation. Examining its behaviour,
the author found that 𝛷 ≈ 𝜑 everywhere close to the standard parallel (this is where the
auxiliary sphere should be used). Using this approximation as a starting value of the
Newton–Raphson rule, the convergence was fast. Accuracy of 10−12 radians were achieved
in 4 iterations. For very high latitudes (ca. 𝜑 > 89.9°), the method does not converge with
this starting value, but it converges (albeit very slowly) if the starting value is decreased by
a few arcminutes.

The spherical latitude cannot be greater than 90°. It is a problem, if we want to use
the low-distortion authalic sphere for polar regions. If 𝛷0 = 52°, 𝜑 = 90° corresponds to
𝛷 ≈ 89° 30′ 52′′ on WGS84. Latitudes greater than this cannot be displayed at all (results in
taking the arcsine of a number greater than 1). This limiting latitude moves to the North, as
𝛷0 is increased, and 𝛷0 = 90° is also feasible. On the other hand, it moves to the South if 𝛷0
is decreased, reaching 𝛷 ≈ 87° 17′ 56.7′′ for 𝛷0 = 0°. This should not be a practical problem
as long as the pole is not displayed on the map (the double stereographic projection has
similar problems very close to the poles, and it does not influence its practical usefulness).
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6 Wrapping up
In this paper, a new realization of the oblique LAEA projection was developed. This is not a
drop-in replacement of Snyder’s LAEA, its planar coordinates and distortions slightly differ.
Therefore, it cannot be used for existing coordinate systems, but one may consider it when
defining new ones. Its major advantage is that it is closer to the spherical LAEA, one may
neglect the differences between the spherical and ellipsoidal maps. While developing the
formulation, the inverse formulae of the spherical LAEA were revised. The new spherical
inverse equations are more stable and can be used to replace existing implementations of
the spherical LAEA or the sphere-to-plane part of Snyder’s double mapping.

It was a theoretically interesting result that the parametrization of the low-distortion
authalic sphere closely resembles that of the Gaussian conformal sphere. The reasons of it
should be investigated in the future.
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A Calculating the derivatives of the double mapping
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