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Abstract: The integration of large language models (LLMs) with geographic information science (GIScience)
represents a new frontier in interdisciplinary research that combines advanced natural language processing with
sophisticated spatial data analysis. This paper explores the synergistic potential of combining the natural lan-
guage understanding and generation capabilities of LLMs with the expertise of GIScience in handling complex
geospatial data. By exploring the specific contributions that LLMs can offer to GIScience, such as improving
data processing, analysis, and visualization, and the mutual benefits that GIScience can offer to LLMs in terms of
spatial reasoning and conceptual frameworks, we outline a comprehensive framework and a research agenda for
this integration. Furthermore, we address the societal and ethical implications of this convergence, highlighting
the challenges of bias, misinformation, and environmental impact. Through this exploration, we aim to set the
stage for innovative applications in urban planning, environmental analysis, and beyond, while emphasizing the
need for responsible use of AI.
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1 Introduction

At a time when both data-driven and knowledge-driven insights are crucial, the integration
of large language models (LLMs) and geographic information science (GIScience) repre-
sents a new area of interdisciplinary research. The integration of artificial intelligence (AI)
has driven GIScience in the past by enabling sophisticated spatial analysis and modeling
techniques. This trend began in the early 1990s, when the decline of traditional quantitative
methods in geography sparked interest in new AI techniques and expert-based computa-
tional approaches [48]. Formal models soon followed, providing AI reasoning mechanisms
and languages for processing geographic objects at a fundamental level [16, 51]. With the
increasing incorporation of foundation AI models into GIScience, deep learning and ma-
chine learning models have been widely used for accurate interpolation and analysis of
large geospatial datasets, replication, simulation, and prediction of environmental and ur-
ban phenomena [36].

However, the emergence of LLMs heralds a new era and offers unprecedented po-
tential for the expansion of GIScience through improved natural language understand-
ing, geospatial text generation, and innovative applications at the interface of language
and spatiotemporal data. LLMs using transformer architectures [57] and large amounts
of training data can recognize, summarize, translate, predict, and generate text and other
forms of content [9]. These models are characterized by their ability to understand and
generate language for general purposes, allowing them to perform a wide range of natu-
ral language processing tasks based on patterns learned from data. Despite their ability
to generate coherent and contextually relevant text, LLMs still lack true understanding or
semantic comprehension equivalent to human cognition [6]. Furthermore, LLMs still en-
counter significant limitations in knowledge-intensive and complex tasks. Problems such
as hallucinations, the tendency to draw incorrect conclusions due to biases in data input,
the lack of integration of new knowledge, and the traceability of information sources are
major limitations that LLMs must overcome [6, 46].

As emphasized in previous work [28, 37], ‘spatial is special’ because spatial data re-
quires reasoning about unique relationships (such as proximity, adjacency, and scale) that
are fundamentally different from non-spatial data. GIScience involves advanced spatial
data analysis and reasoning [19] to identify the underlying theories of geographic infor-
mation. While LLMs operate based on statistical patterns learned from data, they lack
an inherent semantic understanding of the concepts they generate. They can mimic com-
prehension by producing coherent and contextually relevant text, but they do not truly
understand the meaning behind the text [7]. Integrating LLMs with GIScience can lead to
innovative methods and insights, especially in the processing and interpretation of geospa-
tial data.

We report on the synergy between the ability of GIScience to process complex geospa-
tial data and the capabilities of LLMs. In exploring this integration, it is crucial to be aware
of the ethical implications and potential risks, particularly in relation to AI-generated mis-
information, data breaches, and potential risks for opaque decision-making, misuse, and
even illegal activity. Our exploration acknowledges both the potential and challenges of
combining the capabilities of GIScience and LLMs. This synergy sets the stage for further
research and innovative applications in areas where geospatial data is paramount, such
as urban planning, smart cities, environmental analysis, wildlife research, health research,
and beyond.
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In the following sections, we explore the specific contributions of LLMs to GIScience
and how these models can improve the creation, processing, analysis, and visualization
of geospatial data. We also discuss the mutual benefits that GIScience can provide to the
development and refinement of LLMs, particularly with regard to spatial reasoning, for-
mal models, and the integration of complex, multidimensional data. A separate section
addresses the societal implications and ethical considerations of the integration of both,
highlighting potential biases and the need for responsible use of AI. We then present a
comprehensive framework (Figure 1) that outlines the unique contributions of LLMs and
GIScience to each other, as well as the open questions that require further research. Chal-
lenges mentioned as ‘societal issues’ in Figure 1 are discussed in the concluding comments
of this paper.

Figure 1: Framework for interdisciplinary contributions and open questions in the integra-
tion of LLMs and GIScience.
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2 What LLMs offer to GIScience

2.1 Data integration and recognition

LLMs present a transformative opportunity to enhance GIScience by streamlining access
to geospatial data and automating complex tasks using their natural language processing
(NLP) capabilities. Through advanced semantic analysis, LLMs can analyze unstructured
documents and identify spatial relationships within texts, such as relative location descrip-
tions (e.g., “next to”, “north of”, or “between”), supporting the extraction and inference of
spatial patterns [49]. These models can automatically identify location-based information
within text, such as place names, coordinates, or spatial relationships, and generate special-
ized code to process and analyze this data. This capability allows users to streamline tasks
that would otherwise require advanced programming skills. Furthermore, LLMs simplify
the handling of complex geographic datasets, making it easier to organize, query, and vi-
sualize spatial information in ways that were previously challenging for non-experts [12].
The integration of LLMs with imagery supports image-to-text generation, which enables
the extraction of meaningful information from visual data [50]. Additionally, multimodal
LLMs allow users to ask questions about features or labels on maps, facilitating more intu-
itive interaction with geographic data.

2.2 Spatial Reasoning and Knowledge Gaps

Spatial relation inference, a valuable function within GIScience, refers to the ability of mod-
els to understand and interpret spatial relationships between objects or entities in a given
context. LLMs trained to identify spatial relationships—such as proximity, containment, or
directional cues—can enable tasks like spatial joins, spatial indexing, and even workflow
automation within GIS applications [29]. When supported by knowledge graphs that link
spatial entities and relationships in a structured format, LLMs can perform more targeted
searches and retrieve relevant spatial information efficiently [27,45]. This integration allows
the model to consider not only the language but also the underlying spatial data connected
to that language [17].

Spatial recognition tasks often involve textual and visual data. For instance, models
such as CLIP (contrastive language-image pre-training) have shown promise in associ-
ating textual descriptions with corresponding images, allowing for richer spatial under-
standing [49]. Fine-tuning a general-purpose LLM on domain-specific datasets containing
geographic and spatial information can improve its spatial reasoning capabilities. This pro-
cess involves adjusting the model’s parameters based on additional training data, focusing
on spatial terms, geographical contexts, and common spatial reasoning tasks. Further rea-
soning processes can focus on specific spatial operations such as proximity analyses [35].
Moreover, LLMs can refine their understanding by processing sequential prompts to im-
prove the accuracy of their spatial inferences. Finally integrating LLMs with embodied
agents (robots or systems that physically interact with the environment) may provide real-
world experiences that enrich the model’s spatial reasoning, such as embodied large vision-
language models (LVLMs) [15].

Latest research has demonstrated the effectiveness of LLMs in representing textual de-
scriptions of geometry and spatial relations within GIScience [31]. The authors systemati-
cally assess how well LLMs interpret and generate spatially explicit descriptions, highlight-
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ing their strengths and weaknesses in understanding geometric concepts. They establish
benchmarks for the performance of LLMs in terms of geometry and spatial relationships
to facilitate comparisons between models and identify the most effective ones. The find-
ings indicate that LLMs can support spatial reasoning processes by accurately interpreting
complex spatial relationships, which is valuable for various GIScience applications. Com-
plementary work by [8] explores how LLMs comprehend geographic data and support
geospatial decision-making. Focusing on autoregressive models, it employs three exper-
imental approaches: probing LLMs for geo-coordinates to assess geospatial knowledge,
using geospatial and non-geospatial prepositions to evaluate awareness, and conducting a
multidimensional scaling (MDS) experiment to test reasoning abilities in determining city
locations. The results suggest that the effective synthesis of geospatial knowledge may not
necessarily require larger LLMs, as commonly assumed. Instead, a federation of smaller,
specialized LLMs tailored to specific geospatial tasks could provide an alternative, poten-
tially more efficient approach. This highlights a promising direction for future research,
emphasizing sophistication and task-specific optimization over sheer scale.

2.3 Natural language interfaces

Recent advances in LLMs, characterized by sophisticated natural language user interfaces
and multimodality, may fundamentally change the way geospatial data is accessed, man-
aged, analyzed, and visualized [10]. These models enable interactions through a conversa-
tional, human-like language, significantly reducing the complexity traditionally associated
with analyzing geospatial data using geographic information systems (GIS). LLMs have
shown the ability to extract geographic patterns and outliers from large documents and
predict human trajectories from large location-based series of movements [62]. This inte-
gration streamlines analytical workflows and enriches geovisualization by enabling users
to ask queries in natural language and obtain intuitive visual representations tailored to
specific goals. LLMs, when extended appropriately, can also trigger geographic data pro-
cessing workflows that embed specific queries and produce cartographic outputs [39]. In-
deed, LLMs trained on extensive textual data, including geographic information and rela-
tionships, can often extract patterns and correlations, suggest potential solutions and strate-
gies for problem-solving tasks [11], and facilitate dialog with non-experts [65, 68]. These
advances lower the technical barriers of traditional GIS, making sophisticated geospatial
data analysis accessible to a wider audience, and fostering a more inclusive environment
for spatiotemporal exploration and discovery.

2.4 Synthetic data and benchmarks

LLMs also have the potential to generate synthetic datasets that simulate various spa-
tiotemporal settings, which is valuable for hypothesis testing and model development. In
the age of big data with vast volumes, velocities, and varieties of data (e.g., remotely sensed
data), validation of geospatial data is a challenge. Synthetic dataset generation is a promis-
ing area, allowing LLMs to simulate diverse spatiotemporal scenarios useful for hypothesis
testing, model development, and data validation, especially when real-world data collec-
tion is resource-intensive [22]. LLMs can generate synthetic datasets for GIScience by lever-
aging their understanding of spatial relationships and contextual data through a process
known as generative modeling. This involves training the model on existing geographic
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datasets to learn the underlying patterns and distributions of spatial phenomena. The LLM
can then create new datasets by sampling from these learned distributions while respect-
ing certain user-defined constraints such as geographic boundaries, population densities,
or environmental factors. This capability enhances the training and validation of various
machine learning models in GIS, supporting predictive analytics, and improving unsu-
pervised learning and exploratory data analysis. LLMs provide virtual assistant capabili-
ties through natural language, opening up many possibilities for much greater interaction
between GIS and end users with non-expert skills, and then new avenues for interactive
learning. However, there is still a need for the development of unified frameworks that
provide appropriate guidelines for synthetic data generation [40].

To evaluate the quality and reliability of these synthetic datasets and LLMs’ spatial
capabilities broadly, recent synthetic benchmarks have been developed to assess the spa-
tial reasoning ability of LLMs and their ability to develop comprehensive problem-solving
strategies [13,35]. These benchmarks are crucial for validating both the synthetic data gen-
eration process and the broader spatial reasoning capabilities of LLMs. However, spatial
reasoning remains a challenge for LLMs because they are not embodied and humans ac-
quire much of their spatial understanding through physical interaction with the world [34].
Combining LLMs with explicit spatial reasoners can mitigate these limitations and provide
more robust methods for spatial analysis [35].

2.5 Intelligent agents and hybrid approaches

Beyond synthetic data creation, integrating LMMs into GIScience holds the potential to
streamline research processes and foster innovative thinking. As a result, researchers might
explore new forms of problem-solving and in-depth hypothesis formulation and testing as
technical complications are reduced. For example, the integration of LLMs into research
workflows has been shown to enhance hypothesis generation, leveraging the ability of
machine learning algorithms to identify patterns beyond human recognition. These mod-
els can generate novel, high-quality hypotheses that are rated as comparable to, or even
exceeding, those produced by human researchers in terms of clarity, originality, and im-
pact [4, 67].

Additionally, AI tools can reduce the cost and time associated with exploring com-
binatorial spaces for innovation, which significantly enhances the efficiency of hypothe-
sis testing and development [1]. While there are concerns about over-reliance on these
technologies potentially stifling creativity, structured approaches to hypothesis generation,
such as using machine learning to reveal novel insights from high-dimensional datasets,
demonstrate how these tools can complement human ingenuity [41]. This interplay be-
tween human creativity and AI-driven innovation could herald a dramatic shift in the pace
and scope of advances in GIScience. Furthermore, the integration of LLMs into intelli-
gent agents—autonomous systems capable of perceiving their environment and making
decisions to achieve specific goals [30]—could significantly advance GIScience. Intelligent
agents can contribute to GIScience by improving our understanding of how spatial relation-
ships and temporal dynamics are structured and analyzed. By learning complex geospatial
concepts, intelligent agents can help develop more sophisticated models for spatial analy-
sis. This integration can lead to deeper insights into the nature of geographic information
and the principles that govern space and time, and provide a more robust framework for
spatial reasoning and analysis. Such systems can use sensors to collect data and feed it
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back to the language model, allowing it to learn from physical interactions, similar to how
humans acquire spatial understanding through experience [34]. To effectively integrate
LLMs with spatial models as spatial agents, several best practices and potential roadblocks
must be considered. First, ensuring that the datasets used for training both LLMs and
spatial models are consistent in terms of terminology and geographic references can sig-
nificantly enhance performance. Additionally, employing multimodal training strategies
that combine textual and spatial data allows LLMs to learn a more comprehensive model.
Leveraging knowledge graphs to connect spatial entities and their relationships can also
improve spatial reasoning capabilities. Challenges include data quality and availability, as
incomplete datasets can hinder model performance. The complexity of spatial reasoning
itself poses another barrier; LLMs, as recent studies [13] demonstrate, continue to struggle
with tasks involving intricate spatial relationships, such as reasoning about cardinal di-
rections. Despite improvements in performance, these limitations highlight the challenges
LLMs face in achieving robust spatial reasoning comparable to human intuition. Addition-
ally, computational resource demands for training integrated models can be substantial,
necessitating algorithm optimization. Specific tasks that may enhance a spatial agent’s ca-
pabilities in GIScience are still to be explored, as are the ways that LLMs could be used to
improve the interpretability of spatial models.

However, it is worth considering whether pure LLMs are already obsolete in the rapidly
evolving field of AI. Recent advances suggest that newer models and hybrid approaches
may soon surpass LLMs in capability and efficiency, especially for more complex reasoning
tasks. Retrieval-augmented generation (RAG), for example, combines the power of LLMs
with a retrieval system to provide more accurate and contextualized information [18]. The
integration of knowledge graphs into RAG systems can further enhance their ability to
retrieve relevant facts and relationships for geospatial reasoning tasks [17]. By representing
geospatial entities, attributes, and relationships in a structured knowledge graph, RAG
systems can perform more targeted searches and provide LLMs with cleaner, more relevant
context. Small language models (SLMs) aim to improve efficiency by focusing on critical
aspects of data processing [26]. Hybrid AI approaches, which integrate knowledge-driven
and data-driven methods, provide a more comprehensive understanding by combining
logical reasoning with pattern recognition. In addition, models such as joint-embedding
predictive architecture (JEPA) and its variants (e.g., I-JEPA, V-JEPA) are being investigated
for their potential to better understand and predict complex systems [3]. These advances
highlight a shift towards more specialized and efficient AI systems that could redefine the
landscape of geospatial analysis and beyond.

3 What GIScience offers to LLMs

3.1 Conceptual framework

GIScience, with its inherently multimodal nature and its specialized analytical and concep-
tual frameworks [42], has much to contribute to the development of LLMs. While LLMs
excel in processing unstructured textual data, GIScience brings unique reasoning capabili-
ties, thematic diversity, and domain-specific methodologies that can significantly enhance
LLM performance and expand their applicability. GIScience specializes in managing com-
plex geographical phenomena, spatial, and spatiotemporal data relationships, including
hierarchies, proximity, and network connectivity.
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These concepts provide a robust foundation for improving the reasoning capabilities
of LLMs. By embedding GIScience-inspired algorithms and models, LLMs can better in-
terpret spatial hierarchies, such as spatial hierarchies (e.g., administrative subdivisions of
countries or regions), networks (e.g., transportation or utility networks), (dis)similarity
measures (e.g., Euclidean or network distance), neighborhood structures and proximity
relationships. GIScience can support LLMs in understanding phenomena that vary over
different spatial scales, bridging gaps between global and local perspectives to offer more
context-aware interpretations, a critical aspect often overlooked in text-based systems. This
integration allows LLMs to contextualize relationships across scales, such as distinguishing
between local, regional, and global phenomena, which is essential for applications in urban
planning, disaster management, or climate modeling GIScience’s focus on spatial topology
can also help LLMs avoid errors in spatial reasoning by enforcing rules about adjacency,
containment, and connectivity.

3.2 Multimodal data and spatial representation in LLMs

Although modern LLMs are increasingly multimodal, integrating images, audio, and text,
GIScience brings a unique form of multimodality through spatial data types (e.g., vector,
raster, and spatiotemporal datasets). These formats provide structured representations of
geographic phenomena that LLMs can use to build richer semantic models and a sound
representation of real-world phenomena. Vector data, characterized by points, lines, and
polygons, captures discrete objects such as landmarks, roads, and parcels. Raster data pro-
vides a pixel-based approach to representing continuous surfaces such as elevation and
temperature gradients. GIScience also supports event-based models, allowing LLMs to
reason about dynamic phenomena (e.g., natural disasters, urban growth) by incorporating
temporal changes and spatial relationships into their predictions. Integrating these capabil-
ities can enable LLMs to process, predict, and describe complex interactions between space
and time more effectively. This spatiotemporal perspective offers LLMs a structured ap-
proach to integrating dynamic datasets, enabling these models to comprehend and predict
changes across multiple spatial and temporal scales.

One of the challenges with LLMs is their tendency to hallucinate, generating plausible-
sounding but incorrect outputs. GIScience offers well-established analytical models and
validation techniques that can mitigate biases in the training data by providing external
benchmarks for spatial reasoning. For example, spatial analysis methods, such as clus-
tering, interpolation, or network analysis, can serve as a check against the interpretations
generated by LLMs, ensuring their outputs are consistent with real-world spatial patterns.
They can limit hallucinations where the AI ‘imagines’ patterns that reflect biases in the
training data. Additionally, GIScience’s focus on uncertainty modeling can enhance LLM
outputs by helping them explicitly quantify and communicate the confidence levels of spa-
tial predictions, addressing a critical gap in current LLM capabilities.

3.3 Intuitive spatial reasoning in LLMs

Alternative intuitive modeling approaches stemming from naive geography may offer new
opportunities, as LLMs provide valuable support for interpreting informal and vague de-
scriptions of geographic concepts. Naive geography principles, when paired with the gen-
erative capabilities of LLMs, could enhance their ability to intuitively process and simulate
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human-like spatial reasoning. For example, this synergy could enable LLMs to propose
plausible geographic scenarios or alternatives based on vague descriptions, such as “a vil-
lage near a river in a mountainous area,” helping to generate more context-aware analyses.
Furthermore, integrating folk geographic knowledge with LLMs could democratize spatial
analysis by allowing non-experts to interact with complex geospatial tools through natural
language interfaces.

GIScience provides analytical models that are essential for checking the validity of the
interpretations of spatial data made by the LLM. These models can ensure that the conclu-
sions drawn from the spatial analysis are reliable and robust. They can limit hallucinations
where the AI ‘imagines’ patterns that reflect biases in the training data. In addition, GI-
Science provides a conceptual framework for defining analytical purposes that helps LLMs
understand the context and goals of spatial analysis.

An important contribution of GIScience to LLMs is the provision of a ‘spatial language’.
This language includes terminologies, concepts, and contexts specific to spatial informa-
tion [32] and enriches LLMs with spatially relevant vocabulary and expressions for features
and relationships between one feature and another. An emerging field called Geographic
Question Answering (GeoQA) provides methods for answering complex geographic ques-
tions that go beyond simple fact retrieval [43]. While GeoQA research builds upon de-
velopments in spatial knowledge graphs within GeoAI [29], both knowledge graphs and
LLMs contribute distinct yet complementary approaches to spatial reasoning. Knowledge
graphs provide structured representations of spatial relationships through explicit connec-
tions that can support both symbolic reasoning and embedding-based methods. These
graph-based approaches enable explicit representation of spatial relationships, while LLMs
learn to encode spatial semantic information through their training on large text corpora.
The intersection of these approaches suggests potential benefits: knowledge graphs offer
structured, verifiable spatial relationships, while LLMs provide flexible natural language
understanding and generation capabilities.

3.4 Hybrid approaches

GIScience provides methodologies that can complement LLMs in hybrid AI approaches,
such as integrating rule-based spatial reasoning with data-driven techniques. For example,
spatial agents informed by GIScience can serve as intermediaries, processing geospatial
data and feeding structured inputs into LLMs. This collaboration allows LLMs to leverage
the strengths of GIScience without requiring exhaustive retraining on specialized datasets.
However, the effective integration of these approaches for GIScience applications remains
an active area of research requiring rigorous empirical evaluation to validate their com-
parative and combined effectiveness in specific use cases [52]. GIScience enables LLMs
to integrate spatial querying and reasoning, topological modeling, and spatial statistics to
promote natural language explanations that are spatially relevant [61]. GIScience can help
LLMs achieve more sophisticated geospatial reasoning, allowing them to resolve ambigu-
ities in spatial queries, such as identifying spatially similar regions or inferring implicit
spatial relationships. This can also support the identification of previously unnoticed spa-
tial patterns. This integration paves the way for interdisciplinary collaboration, bringing
together experts from different fields such as urban planning, environmental science, and
public health. These fields require specialized knowledge and reasoning that can be em-
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bedded into LLM training processes. Such collaborations could lead to innovative solutions
to complex spatial problems that utilize the analytical capabilities of LLMs.

3.5 Geospatial learning in LLM training

By incorporating GIScience datasets and methodologies, LLMs can move beyond generic
language-based training paradigms to include domain-specific geospatial learning. Train-
ing LLMs on synthetic geospatial datasets generated through GIScience principles enables
them to generalize better to real-world scenarios, particularly in underrepresented regions
or phenomena where data scarcity is a challenge. Furthermore, GIScience methodologies
for generating synthetic spatial datasets can enhance the diversity and robustness of train-
ing data, improving model performance and resilience.

By integrating GIScience concepts, reasoning capabilities, and thematic diversity, LLMs
can gain a more nuanced understanding of the spatial and temporal dimensions of the
world. This synergy opens up new possibilities for hybrid systems that combine the
strengths of GIScience and LLMs, advancing both fields and enabling applications that
were previously unattainable. GIScience’s unique contribution lies in its ability to bridge
the gap between abstract language-based reasoning and the concrete, spatially explicit
nature of real-world phenomena, making it an indispensable partner in the evolution of
LLMs. Ultimately, this collaboration underscores GIScience’s unique role as a bridge be-
tween abstract language-based reasoning and the concrete, spatially explicit nature of real-
world phenomena, making it an indispensable partner in the evolution of LLMs.

4 Societal issues

Any integration of GIScience and LLMs should include a robust consideration of societal
issues. While the incorporation of LLMs into GIScience or the enhancement of LLMs with
GIScience could offer significant advances, they also pose ethical, social, and environmen-
tal challenges. One of the main concerns with LLMs is the potential bias or lack of trust
in their outputs. These models are trained on large datasets that can contain biases as in-
puts, leading to the reinforcement of stereotypes and unfair treatment of certain groups.
Additionally, spatial data often lacks context, which can lead to misinterpretations and
skewed conclusions. When integrated into GIScience, these biases can manifest themselves
in location-based services and analyses, leading to discriminatory practices. For example,
when an LLM is used to generate content about different neighborhoods, it can perpet-
uate existing social biases, for instance, linking minorities to crime or characterizing safe
neighborhoods as white. Algorithms can direct police to “over police” areas or suggest
the denial of public services to the poor. The integration of LLMs and GIScience also can
affect the trustworthiness of the information generated. LLMs can produce plausible but
incorrect output, leading to the spread of misinformation. It can overemphasize crime in
a community or underemphasize the impacts of climate change on a particular country.
Misinformation can include inaccurate maps or flawed spatial analysis, which can mis-
lead decision-makers and the public. Li et al. [37] argue that “Interpretability ... makes a
GeoAI model transparent and inherently more trustworthy.” That’s debatable since it con-
flates social acceptance with interpretability and implies that all audiences can be satisfied
with transparency alone or singular interpretations or explanations [2]. More importantly,
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trustworthiness in GeoAI should account for the unique characteristics of geospatial data
that span multiple spatial, temporal, and thematic dimensions, although one could employ
insights from Volunteered Geographic Information [20], in elevating the role of the contrib-
utor (as opposed to the contribution) and thus assessing the trustworthiness of a model.
For example, how well does the modeler know the location they are modeling or trust the
spatial output of an LLM?

To mitigate some biases, one could use diverse and representative datasets, conduct
bias audits, and engage impacted groups in the model development process. Appropri-
ate bias mitigation could include (1) expanding the distribution of geographic data to new
examples, (2) removing inappropriate geographic data and generating new data, or (3)
identifying hidden data and integrating it effectively. One could attempt to quantify the
differences in a model’s behavior across various demographic groups [14]. Equally or even
more importantly, actively involving affected communities can help to build more equi-
table geospatial solutions [53]. As LLMs now incorporate visual capabilities, their evalua-
tion should consider prior knowledge of the specific tasks they are capable of performing,
or at least a reference for doing so (e.g., landmarks identification, image classification and
segmentation, change detection), and the diversity of geographic data sources to be pro-
cessed [52]. Incorporating human expertise and participatory approaches in the validation
process is crucial to ensure the accuracy, reliability, and trustworthiness of models dealing
with geographic data [53]. This implies active design processes, iterative interactions with
local people, and collaborative crowdsourcing platforms to gather feedback and valida-
tions. This should ensure that the insights derived from LLMs are both meaningful and
unbiased, providing valuable support for decision-making in various geographic applica-
tions.

The training of LLMs requires considerable computing resources, which leads to signif-
icant energy consumption and environmental impact. Integration with GIScience, which
also involves extensive data processing, exacerbates this issue. The carbon footprint during
training and inference of these models is a growing concern, necessitating the development
of more energy-efficient algorithms and sustainable practices in AI research [55].

The use of advanced technologies, such as LLMs and the applications of GIScience,
can widen the digital divide. Access to these tools and the benefits they provide can
be unevenly distributed due to the high costs and technical expertise required. This can
limit the ability of marginalized communities to use these technologies, exacerbating ex-
isting inequalities. It is crucial to make a concerted effort to democratize access to these
technologies and ensure that their benefits are distributed more equitably across different
population groups. People can be sensitized to the differential access to LLMs depend-
ing on location—especially as LLMs become increasingly costly—and to the geopolitical
economics of LLMs that concentrate wealth in the Global North. Integrating LLMs with
GIScience also requires a focus on expertise and education to ensure effective use. Training
for GIS professionals and LLM developers is essential to understanding geospatial data
nuances and the capabilities of LLMs. Interdisciplinary collaboration between geography,
data science, and AI experts can enhance application robustness. For example, human
geography contains thousands of articles on spatial bias and integrating the lived experi-
ence of non-experts. Democratizing tools and providing access to LLM-powered GIS ap-
plications empower a broader user base, generating better models and fostering inclusive
participation in geospatial decision-making. Although LLMs are trained on large datasets,
the diversity and complexity of geospatial data and queries in GIScience far exceed their
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training data [8]. This discrepancy can lead to errors and unreliable answers when LLMs
encounter new or unexpected geospatial queries. For example, an LLM may have difficulty
accurately interpreting complex spatial relationships or temporal dynamics that were not
well represented in its training data. This limitation can affect the reliability of geospatial
analyses and decision-making processes that rely on LLMs. To address this issue, continu-
ous updates to training data and models are required, as well as the development of spe-
cialized techniques to effectively handle queries that lie outside the domain of geospatial
data.

The integration of GISience and LLMs raises additional societal issues, particularly in
the areas of privacy and surveillance, transparency and accountability, and influence on
public opinion and behavior [56]. While concerns about privacy and surveillance predate
LLMs, the integration of these technologies amplifies risks in unique ways. By processing
large amounts of location-based data, people’s movements can be closely tracked, leading
to privacy concerns and potential infringements of civil liberties infringements through
advanced surveillance systems. LLMs, with their ability to facilitate access via natural lan-
guage queries, make it easier for users to extract sensitive insights from geospatial data,
potentially lowering the barrier for misuse or intrusive analysis. Ethical issues arise from
the use of personal data without informed consent and the risk of misuse for malicious
purposes such as disinformation campaigns or unauthorized surveillance [5]. The com-
plexity of LLM algorithms and the way information is represented across multiple layers
of neural architectures makes decision-making processes opaque, undermining trust and
complicating accountability for errors or negative outcomes. In addition, the potentially
widespread dissemination of information through LLMs, amplified by easy access to LLMs
such as ChatGPT for non-technical users, combined with geospatial data can significantly
influence public opinion and behavior, raising ethical questions about accuracy, objectivity,
manipulation, and consent.

5 Discussion

Generalizability and reproducibility of LLM-supported spatial research in GIScience are
critical but nuanced concepts that deserve careful consideration. Generalizability refers to
the ability of LLMs to effectively interpret, model, and analyze spatial data across differ-
ent geographic datasets, while reproducibility ensures that spatial research results can be
consistently validated under similar conditions. These fundamental requirements become
even more complex in the modern AI landscape.

However, as highlighted by La Malfa et al. [33], reproducibility faces significant chal-
lenges in the context of proprietary Language-Models-as-a-Service (LMaaS). These chal-
lenges are particularly relevant for GIScience research, where geographic data is often dy-
namic and highly contextualized. According to Goodchild & Li [21] and Nichols et al. [47],
reproducibility should not be viewed as a binary outcome, but as an evolving process
where results may exhibit ’weak reproducibility’, i.e., varying degrees of reproducibility in
different spatial and temporal contexts. This perspective acknowledges that reproducibil-
ity in spatial research spans a spectrum, with results potentially more replicable in nearby
areas than in more distant areas, consistent with the principle of spatial dependence.

This inherent geographic complexity is further complicated by the technical challenges
of working with commercial LLM services. Proprietary cloud-based LLMs frequently
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modify, deprecate, or remove services without notice, complicating the replication of geo-
referenced experiments. This evolving nature of LMS not only hinders the validation of
geospatial research results but also compromises their robustness and long-term integra-
tion into decision-making frameworks that rely on spatial analysis and evaluation.

The persistence of challenges related to generalizability, such as overfitting to specific
datasets, can lead to models that perform poorly when applied to new or varied spatial
contexts. In geospatial contexts, this can manifest itself in models misinterpreting spa-
tial patterns or failing to account for variations in the local environment or cultural back-
ground. Similarly, the lack of reproducibility due to variations in model training or data
preprocessing can hinder the validation of results and methods in GeoAI.

These problems are further amplified by the principle of spatial heterogeneity, which
states that study outcomes are inherently variable depending on the spatial and temporal
bounds of the data. In the context of LLMs, this suggests that replicability must account
for spatial variation in language model predictions and parameter tuning across different
spatial datasets [38]. The concept of weak replicability is crucial here, as models retain
generalizable structures but adjust their results based on location-specific data. Metrics of
replicability could be explored to assess the stability of LLM-derived findings in nearby
and distant regions, supporting the notion that replicability is a variable and not a binary
property when spatial heterogeneity is taken into account.

These issues may impede the adoption of LLMs in decision-making processes, and po-
tentially limit progress towards meaningful interoperability of LLMs and GIScience. To
overcome the challenges of generalizability and reproducibility in LLM-supported spa-
tial research, several directions can be pursued: develop spatially-aware standardized
methods for training and testing models; use diverse geographic datasets that represent
varying spatial scales and regions to enhance model adaptability; acknowledge the di-
versity of spatial data sources, including institutional datasets and increasingly hetero-
geneous, crowdsourced data that may vary in quality but provide valuable contextual
information, promote transparency through open spatial data and code sharing; imple-
ment robust cross-validation techniques to ensure unbiased results; establish benchmark-
ing frameworks specifically tailored to geospatial tasks, such as spatial prediction, routing,
or spatial feature extraction; and foster a culture of continuous evaluation and adaptation
to keep models updated with new spatial data, including institutional and crowdsourced
resources.

Leveraging open LLMs is particularly desirable for GIScience applications, as they al-
low for greater transparency and flexibility compared to proprietary spatial models. How-
ever, even open LLMs often lack full transparency unless they also release their training
data, as seen in efforts like those of AllenAI [54]. Without access to training data that covers
diverse geographic contexts, critical questions about spatial biases, limitations, and model
generalization capabilities remain unresolved.

Focusing on these strategies, including advocating for more transparent open LLM ini-
tiatives, can enhance the reliability of LLM-supported spatial research and contribute pos-
itively to the sound integration of GIScience and LLMs.

While LLMs demonstrate promise in zero-shot or few-shot scenarios for text-based
tasks, they often underperform in complex multimodal tasks, highlighting the need for
tailored approaches for different geospatial domains [44]. Furthermore, developing a mul-
timodal LLM capable of reasoning across various geospatial data types through effective
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alignments remains a major challenge, alongside unique risks related to ethical considera-
tions, data privacy, and potential biases in geospatial decision-making.

Decades ago, the combination of CAD and databases led to the development of GIS. At
that time, three approaches competed with each other: the integration of CAD systems with
databases (e.g., AutoCAD with attributes), the extension of databases with spatial functions
(e.g., Oracle with spatial features) and the development of new GIS systems from scratch
(e.g., ArcGIS, QGIS). Today we are seeing a similar development in GIS and LLMs, which
may expand into what could be called “Natural GIS”, “Generative GIS”, or “LLMGIS”. This
new development points to a competition between augmenting existing GIS with LLMs
(e.g., ArcGIS with AI assistants), integrating LLMs with existing tools (e.g., ChatGPT with
Python and shapefiles), and creating entirely new systems from scratch.

Development and educational research on LLM-based innovations are still in their early
stages, and while automated learning processes could be favored when dealing with geo-
graphic concepts and applications, there is a need to integrate ethical issues for successful
integration into learning programs [63]. This is particularly relevant in the context of GI-
Science, as its rapidly growing development in the era of major environmental and societal
challenges and the increasing need for open science requires a rethinking of its educational
foundations. In addition, the continuous evolution of supporting technologies, from novel
interfaces to location-based services, is an important driver that will play an essential role
in the development of LLM and the integration of GIScience and should be taken into
account.

We note that although we have focused here on LLMs, there is increasing interest in
Small Language Models (SLMs), which are trained on much smaller, typically domain-
specific and highly curated datasets, and which are then experts in particular domains of
focus. These models have the advantage of being less costly to train (and run) and less
likely to hallucinate given the nature of their training data. Their narrow nature can be
mitigated by a community of SLMs, each focused on specific domains of expertise and
perhaps integrated via a more general purpose language model that can help route the
prompts to the appropriate SLMs.

6 Towards a research agenda

The potential convergence of LLMs and GIScience offers a promising avenue for advancing
geospatial data analysis and natural language processing when reasoning about geospatial
texts, as well as improving interaction with non-experts and citizens. This paper explored
the mutual benefits of integrating the linguistic skills of LLMs with the expertise of GI-
Science in spatial data, highlighting their potential to transform the processing, analysis,
and visualization of geospatial data. However, this integration also brings challenges, in-
cluding the risk of bias, misinformation, and environmental impact. By addressing these
issues and promoting responsible use of AI, the synergy between LLMs and GIScience
can lead to innovative solutions in various fields (e.g., urban planning) and improve our
ability to understand and interact with complex spatiotemporal phenomena. The search
for a research agenda should aim to enhance GIScience through the integration of LLMs
by focusing on several key areas. A primary challenge lies in exploring how to integrate
LLMs with external reasoners, especially given their well-known limitations in complex
reasoning, including spatial reasoning. The focus is on improving the NLP capabilities
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of LLMs to analyze unstructured geospatial documents and extract complex spatial rela-
tionships in different contexts. Key future directions include establishing benchmarks for
evaluating their performance across scales in both space and time, which remains essential
for ensuring the reliability and scalability of their applications in GIScience.

This includes the development of prompting techniques specifically tailored to GI-
Science use-cases, such a the integration of domain-specific knowledge into the prompts
to improve inference accuracy. For example, recent research on geoentity-type constrained
knowledge graph embeddings has shown promise in improving the inference of spatial
relationships [24]. Promising advancements include the use of graph-based structures that
capture spatial relationships more effectively, the inclusion of semantic attributes to enrich
spatial context, the identification of toponyms from large textual sources in social media,
and the classification of geographic entities based on their spatial, temporal, and functional
characteristics. LLMs can be improved for GIScience by integrating geospatial alignments
where spatial relationships, coordinates, and topological structures are embedded directly
into the training process of the model. This alignment enables LLMs to better capture spa-
tial dependencies, reason about geographic entities, and provide more accurate insights for
location-based tasks.

The fusion of LLMs with knowledge graphs and ontologies offers a significant oppor-
tunity to enhance spatial reasoning by anchoring text-based insights in a geospatial knowl-
edge framework [29]. Additionally, the use of multimodal LLMs that can process text,
images, and geospatial vector data simultaneously presents a compelling avenue for an-
alyzing hybrid datasets commonly encountered in GIScience. Further exploration is re-
quired to address specific challenges, such as ambiguity in spatial language, representing
dynamic geospatial phenomena, and ensuring that models can generalize across regions
with different geographic, social, and cultural contexts. Future research should also inves-
tigate methods for integrating fine-grained temporal analyses that enable LLMs to discern
patterns over time and generate predictions aligned with dynamic spatial processes.

LLMs should generate spatial code by leveraging geospatial libraries, such as GeoPan-
das and PostGIS while ensuring accurate handling of spatial data types. Establishing open
datasets and benchmarks for spatial NLP tasks will be instrumental in accelerating research
and fostering collaborations between the NLP and GIScience communities. Developing a
multimodal LLM capable of reasoning across various geospatial data types through effec-
tive alignments remains a major challenge in enhancing the capabilities of LLMs to process
text, imagery, and geographic data, improving spatial understanding and visualization.

The agenda should include developing frameworks that combine LLMs with knowl-
edge graphs for better spatial reasoning while carefully considering the role of synthetic
datasets in GIScience research. If well-designed, such datasets can provide controlled envi-
ronments for model training, evaluation, and stress testing beyond typical real-world dis-
tributions. However, their generation must be guided by rigorous methodological frame-
works that address potential biases and ensure a meaningful representation of diverse spa-
tial phenomena. Importantly, synthetic data creation requires a priori knowledge, whether
through data selection, resampling, or theoretical modeling. This process relies on the ex-
pertise from GIScientists rather than solely on machine learning. LLMs, lacking awareness
of modeling purposes, cannot assess biases without this theoretical grounding. Particular
attention must also be paid to preventing the reinforcement of existing societal biases in
spatial data, such as demographic stereotypes linked to specific geographic areas. Effec-
tive synthetic data generation depends on deliberate bias mitigation strategies rather than
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merely replicating real-world distributions. This requires unified frameworks that provide
appropriate guidelines for synthetic data generation [40].

To achieve effective and robust integration of LLMs and spatial knowledge graphs, a
comprehensive, neuro-symbolic approach is essential, especially given the inherent chal-
lenges LLMs face in spatial reasoning [59]. First, training LLMs should explicitly incor-
porate spatial knowledge graph representations to provide them with inherent geospatial
understanding. This can be effectively achieved by embedding entity-relationship triples
from geospatial knowledge datasets directly into the model architecture, or through tar-
geted fine-tuning steps. Graph Neural Networks (GNNs) offer a powerful technique for
encoding spatial relationships from knowledge graphs into vector embeddings. These
embeddings can then be seamlessly integrated into the input layers of the LLM, enabling
the model to inherently capture, process, and reason with spatial relationships [66]. Fur-
thermore, the semantic richness of knowledge graphs greatly improves the understanding,
querying, and analysis of geospatial information, particularly when dealing with Geospa-
tial Big Data (GBD). The integration of GBD with knowledge graphs, as highlighted by
Wu et al. [60], provides semantic benefits for spatial reasoning, entity disambiguation, and
fusion of multi-source data. This integration facilitates semantic modeling by extracting
entities, attributes, and relationships from GBD and mapping them to knowledge graph
concepts, enabling intelligent querying through natural language and complex statements,
and enhancing geospatial reasoning by uncovering implicit spatial relationships and pat-
terns [60].

Second, attention mechanisms within LLMs should be strategically adapted to priori-
tize spatial relationships. This may mean incorporating spatial biases into attention layers,
allowing the model to weigh connections between entities based on their spatial prox-
imity, topological relationships, or even directional relationships within the knowledge
graph [58]. This is particularly relevant in geospatial contexts where spatial adjacency,
connectivity, and even geometric features are crucial for reasoning, as explored in recent
studies on spatially explicit machine learning and GeoAI [42], and further enhanced by
incorporating geometric features in knowledge graph embeddings, which improves pre-
diction accuracy for both geo-entities and spatial relationships [24]. In addition, constrain-
ing knowledge graph embeddings by geoentity-types enables more accurate prediction of
spatial relations in natural language, effectively capturing both spatial and semantic rela-
tionships [25].

At the processing level, dynamic querying of knowledge graphs during inference is
not only beneficial but essential. This allows LLMs to access and utilize up-to-date spatial
facts and reason about evolving spatial patterns in real time. Advanced methods for dy-
namic knowledge graph querying, such as Retrieval-Augmented Generation (RAG), can
empower LLMs to retrieve highly relevant spatial information on demand, effectively aug-
menting their reasoning process and enabling them to handle the dynamic nature of geo-
graphic information [69]. Beyond real-time analysis, LLMs can also be used to systemati-
cally extract and visualize spatial relationships from historical narratives by using knowl-
edge graphs to map the intricate relationships between places and entities, providing new
insights for the exploration of environmental data descriptions [23]. This enhanced neuro-
symbolic integration strategy, which includes advanced training, geometrically and seman-
tically informed embeddings, and dynamic inference enhancements, can enable LLMs to
generate novel and in-depth geospatial insights by effectively synthesizing spatial knowl-
edge from diverse and dynamic sources. Ultimately, this integrated approach aims to
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bridge the inherent gap between traditional, rule-based GIS-based spatial reasoning and
the emerging field of cutting-edge AI-driven geospatial analysis, paving the way for the
development of more sophisticated, adaptable, and insightful applications across the spec-
trum of GIScience.

Additionally, we advocate for user-centric designs that exploit LLMs to create tools
that make GIScience technologies available to non-experts, with tailored approaches for
different geospatial domains, fostering interdisciplinary collaboration to tackle complex
spatial problems. Addressing challenges related to data quality, the complexity of spatial
reasoning, and the computational requirements of integration is crucial. Finally, soundly
recognizing the importance of fairness and accountability, among other elements of ethics,
bolsters the acceptance of the models. The overall agenda should encourage the exploration
of LLMs’ roles in enhancing advanced spatial operations and developing autonomous sys-
tems capable of learning spatial concepts through interactions with their environment. Fi-
nally, blending GIScience with LLMs can contribute to the emerging concept of a World
Model [64] that seamlessly integrates geospatial knowledge, linguistic, and conceptual in-
sights. This aligns closely with the earlier discussed synergy between LLMs and GIScience,
enhancing the model’s ability to reason about, predict, and understand complex spatial re-
lationships and geographical phenomena, while also improving geospatial analysis and
interaction with spatiotemporal data.

7 Conclusion

Researchers are currently evaluating the impact of LLMs on various scientific fields and, in
particular, investigating how these AI systems can revolutionize approaches to GIScience.
The potential of LLMs to provide innovative methods for analyzing geographic phenom-
ena is a topic of great interest. However, it is crucial to recognize the difference between
GIScience as an established scientific discipline and LLMs as advanced computational and
algorithmic tools. This raises an initial food for thought: We are essentially comparing
a scientific field with a technological tool, which leads us to question the implications of
this comparison. Furthermore, it is worth reflecting on the historical parallels between GI-
Science and the current state of LLMs. Initially, GIScience emerged as a computational
paradigm that focused primarily on the integration, processing, and analysis of carto-
graphic data. Similarly, LLMs are currently perceived primarily as computational resources
rather than a scientific discipline in their own right. This brings us to a second key question:
could LLMs develop into a scientific field in their own right?

Consideration of this development requires a deeper examination of the nature of LLMs
and their potential evolution within the scientific landscape. Although LLMs fundamen-
tally operate as computational tools, their capabilities go beyond traditional computational
functions. Unlike previous narrow AI systems, they have the ability to comprehend, gener-
ate, and manipulate language on virtually any topic and at a sophisticated level, enabling
them to take on complex tasks previously reserved exclusively for human cognition. As
LLMs evolve and diversify their applications, they could gradually outgrow their cur-
rent status as mere tools. Their profound impact on various scientific fields, including
GIScience, suggests the emergence of a new interdisciplinary field at the interface between
artificial intelligence and domain-specific sciences. This hypothetical field would not only
harness the computational power of LLMs but also integrate domain-specific knowledge
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and methods to foster a symbiotic relationship between AI technology and scientific re-
search. While LLMs currently serve as powerful computational devices, their potential to
evolve into scientific domains in their own right offers intriguing possibilities for the fu-
ture of scientific research and discovery. Exploring these possibilities requires a nuanced
understanding of the dynamic interplay between technology and scientific research and
paves the way for innovative approaches to knowledge creation and exploration in the
years to come.
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