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Abstract: This paper introduces and evaluates a novel method for privacy-preserving dis-
tance computations. The method is based on randomized geometric surface calculations
and replaces coordinates with contextual variables representing information about the co-
ordinates or the distances between coordinates. The method is presented with an accompa-
nying step-by-step workflow. Its applicability is demonstrated with real-world spatial data
sets from Germany and the Netherlands that contain information about hospital and school
locations. Open data was used to enable reproducibility. The method’s utility is evaluated
in detail using correlations, the relative root mean squared error (RRMSE), a Monte Carlo
simulation, and the Wasserstein distance. The results show that the method yields high
correlations, provides reasonably accurate results as an RRMSE of about 20 % is achieved,
converges fast, and preserves the spatial distribution of the true coordinates.
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4 KLINGWORT AND REDLICH

1 Introduction

Spatial and geo-referenced data containing information about the distance between the
place of residence and points of interest, such as schools or hospitals, is relevant for several
research questions in medical or social science research [3,26]. For example, the distance
to schools is relevant for questions concerning education access and equity, the physical
activity and health of students [7,24] as well as real estate values [8,13]. The distance to
hospitals is relevant regarding healthcare access and quality, health outcomes, and emer-
gency response times [1,5,27,29,32,43].

These examples of different research fields have in common that detailed spatial data
about the distance between a place of residence and a point of interest must be known and
available to the researcher. However, access to datasets containing geo-referenced informa-
tion is restricted to ensure privacy. Furthermore, even when available, geo-referenced in-
formation is often separated from information potentially identifying an individual [4, 36].

To overcome privacy concerns, geomasking methods are used to preserve spatial pri-
vacy while maintaining spatial information [2]. Geomasking methods are evaluated by
their capability to maintain a high utility of the spatial information and their associated
risk of re-identification [9, 10]. It has been shown that most geomasking methods ei-
ther result in too much information loss or do not protect privacy adequately [33]. The
most promising methods for maintaining a high utility and having an associated low risk
of re-identification are methods that release contextual data instead of the actual coordi-
nates [33]. Current methods in this category [22,34] are computationally complex and/or
trim large distances. Our proposed geomasking method preserves utility and privacy and
does not have the abovementioned drawbacks.

The method proposed in this paper is based on randomized geometric surface calcu-
lations, more precisely on the surface of a two-dimensional triangle, to encode distance
matrices. A surface area-based value replaces the geographical distance between coordi-
nates. Thus, ensuring that the distance cannot be used to identify the original location but
the proxy (contextual information) allows the use of standard spatial statistical methods
such as spatial clustering methods.

The paper is organized as follows. First, we give an overview of the current research
background. Second, we formally introduce the proposed method and provide a step-by-
step workflow. This section is supported by Appendix A (relationship between distance
and expected surface area) and Appendix B (empirical simulation of the distance-area re-
lationship). To test the method’s utility, we next describe the data that will be considered
in the application and introduce metrics to evaluate the method. The results are presented
in Section 6, including several performance evaluation results, a hardening method against
attacking approaches, and an evaluation of the re-identification risk. Lastly, we discuss the
method and end with a conclusion.

2 Background

Geoprivacy has been an important topic in various fields. For a short introduction, see,
e.g., [14]. In the past, many geographical masking methods have been proposed to ensure
geoprivacy while still allowing researchers to use spatial information. According to [14],
geographic masking methods are commonly subsumed into aggregation (examples are
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given by [2, 20, 42]), coordinate modification (examples are given by [2,15, 35, 38]), and
releasing contextual data. In the latter, a set of contextual variables are attached to the
individual microdata while removing the precise locations from the dataset [14]. Examples
of how releasing contextual data works in practice are give by [19,22,34]. However, aggre-
gation methods result in major information loss due to the fact that distributed points in an
area are assigned the same value. Thus, for example, accessibility analyses are meaning-
less. Therefore, only perturbation methods or methods providing contextual information
are potentially acceptable for the above-stated examples. Recently, it has been shown that
even perturbation methods do not prevent identifying the unmasked, original location [33].
However, releasing contextual data seems promising, but the number of existing methods
is limited.

One of the two most current methods is Lipschitz embedding for anonymizing geo-
graphical distance matrices proposed by [22]. This method proposes to release only the
distance matrix with perturbed distances by using two parameters, dimension and size,
which affect the variance of approximated distances. The second method, proposed by [34],
is based on intersecting sets of randomly labeled grid points. This method also uses two
parameters: the size of the radius and the number of sampled grid points, which affect the
precision of approximated distances. A real-world implementation has been demonstrated
by [19].

In contrast to the methods by [22,34], the method proposed in this paper has the advan-
tage that only one parameter is required in the anonymization process. That is the number
of sampled grid points. Thus, finding the optimal parameter needs fewer resources. In
contrast to [34], large distances are not trimmed, which is needed if the relation between
the points of the given dataset is of interest. Furthermore, the proposed method is far less
computationally complex, thus allowing it to be applied to large datasets with less compu-
tational resources.

Another method, also based on geometric surface calculations, is proposed by [25] and
called ‘triangular displacement’. Based on a series of questions about the sensitivity of
the data, a minimum and maximum displacement distance is set. Based on random num-
bers between the minimum and maximum displacement distances and the Pythagorean
equation, two displacement distances are determined by adding or subtracting from the
coordinate parts [25]. Thus, this method is a coordinate modification method, while we
propose replacing the coordinate with a distance proxy.

3 Method

As outlined in Section 2, the proposed method aims to replace original distances with proxy
information. In the following, we will explain and demonstrate the method to obtain the
proxy. For this purpose, we consider matrix D with dimensions m x p, and element d;;
representing a geographic distance between two coordinates in a two-dimensional space.
Further, we introduce matrix D with dimensions m x p and element d; j representing the
proxy. For the proxy, we propose to use the average surface area A, and define A = d;;.
This surface area is based upon a two-dimensional triangle that is constituted by a pair of
existing coordinates and a third random pair of coordinates.

The distance between the two coordinates is a measure of length, for example, the
Euclidean distance. The surface area is a measure of area typically associated with two-

JOSIS, Number 31 (2025), pp. 3-25



6 KLINGWORT AND REDLICH

dimensional objects, such as triangles. The relationship between distance and surface area
depends on the specific geometric shape. In the context of a triangle, the lengths of its sides
will affect the surface area. However, this relationship involves more than just a single
distance; it requires consideration of all three side lengths and possibly additional informa-
tion such as angles. With the proposed method, one side of the triangle is given, and the
random pair of coordinates determines the other two.

The proposed method is based on the idea that smaller distances will also yield smaller
surface areas associated with these distances, and larger distances will yield larger surface
areas associated with these distances. Thatis, if d; < dy < ... < d,,, then A; < Ay < ... <
A, and vice versaif d; > dy > ... > d,, then 41 > Ay > ... > A,,. This statement assumes
a linear relationship; if the first distance is smaller than the nth distance, then the average
surface area associated with the first distance will also be smaller than the average surface
area associated with the nth distance. Or vice versa, if the first distance is larger than the
nth distance, then the average surface area associated with the first distance will also be
larger than the average surface area associated with the nth distance.

The surface areas Ay, ..., A, are not solely determined by the distances dy, ..., d,, alone,
as each area also depends on the height of the corresponding triangle, which is a function
of the randomly drawn point R,. However, since the random points are sampled uni-
formly from a bounding box designed to avoid geometric bias, the expected value of the
height becomes approximately independent of the baseline distance. Thus, the expected
surface area A increases proportionally with the base distance d. Appendix A provides a
mathematical justification. Appendix B empirically validates the mathematical assump-
tion. In the following, we describe the workflow step-by-step. The workflow consists of
five steps. The first three steps of the method are visualized in Figure 1. The entire example
is programmed in the statistical programming language R [30].

Step 1 — Generate bounding box (optional)

First, enlarge the area considered for computation by creating a bounding box around the
geographical boundaries (see Figure 1a). As a result, the shape of the original geographi-
cal area has no potential effects. The method proposed by [34] showed that the quality of
the distance approximations increased when the potential effects of the shape were dimin-
ished.

Step 2 — Calculate true distances

Consider a two-dimensional space R? with two coordinates X (x1,z2) and Y (y1,y2) and
dxy being the geographical distance between X and Y. This is shown in Figure 1b. R? is
defined by the bounding box around the geographical borders of Germany. X and Y are
the two geo-locations within R? (black dots). In Figure 1b, dxy is depicted by the red line
connecting the two black dots (X and Y).

Step 3 — Draw random coordinates and obtain triangles

Draw a sample of uniformly distributed random coordinates Ry, ..., R,, € R? of size n. The
random coordinates are required to obtain the triangles AXY R,,. For this example, we
draw a random sample with n = 5, thus creating five triangles. Figure 1c shows X, Y,
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Figure 1: Step 1 shows the enlarged area considered for computation by creating a bound-
ing box.

dxy, Ri,..., Rs, and triangles AXY R1,..., AXY R5. For each dxy, a different sample of
n random coordinates is drawn. If an R,, coincidentally results in a surface area of 0, for
example, when R, lies on dxy, a new R,, should be drawn. After completing steps 1-3,
the next step will be calculating the surface areas required to obtain the distance proxy.

Step 4 — Calculate surface areas

With X and Y as base, calculate the surface area axyr, = %d xyhxvyr, - The geographical
distance dxy is used as the base side of the triangle and calculated as

dxy = V(w2 — 1) + (y2 — 1) 1)

hxv R, is the height of the base side, which depends on the location of R,,, and is calculated
as

hacym, = W2 =200~ yr,) = (01— o) (w2 =)l @

V(@2 —1)? + (y2 — 11)?
The results for the example are shown in Table 1. The results in Table 1 are not in meters or
any interpretable distance unit because the coordinates used are in decimal degrees (lon-
gitude/latitude). Degrees are not linear units like meters or feet—they are angular. Before
calculating distances and areas, they were not converted into a linear system. For the ex-
ample and the method itself, this is not a problem because there is no entitlement for the
derived proxy information to be in an easily interpretable unit, like meters.

From Step 4 and the Equations 1 and 2, it is evident that the area of the triangle axyr
depends directly on the distance dxy. Thus, if dxy increases, the triangle AXY R,,, and
respectively the surface area of this triangle increases, because it is directly proportional to
the baseline dxy. From this, it follows that as the Euclidean distance between two points
in a two-dimensional space (which forms the baseline of a triangle) increases, the area of
the triangle also increases.
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R, | dxy  hxvr, axvr,

Ry | 1.361 1.731 1.178
Ry | 1.361 5.516 3.754
R3 | 1.361 2.713 1.846
Ry | 1.361 3.688 2.510
Rs | 1.361 2.657 1.808

Table 1: Base side of triangle (dxy), height of the base side (hxy), and surface area (axvyr,,)-

Step 5 — Calculate the proxy

Calculate the arithmetic mean A = 23" ayyg, = dij = 2.219 using the information
from Table 1 and store in D. Finally, repeat Steps 2 to 5 for each distance to be masked. The
result is the complete distance matrix D with dimensions m x p and element d;; represent-
ing the proxy.

4 Data

Data from Germany (GER) and the Netherlands (NL) will be used to demonstrate the
proposed method. The two countries differ considerably in size: the land mass of the
Netherlands is about 12 % of the size of Germany (Germany 357,588 km?, the Netherlands
41,850 km?). Hence, the distribution of the distances between the points of interest differs
considerably: there are smaller distances in the Netherlands than in Germany. For details,
see Table 2. Thus, we can analyze how the method performs concerning differences in the
underlying geographical data.

Country Min. 25" Quartile 50‘" Quartile ~Mean 75" Quartile =~ Max.
Germany 0.11 199.62 315.03 320.39 431.35 875.67
Netherlands  0.01 53.90 88.03 95.35 131.24 323.88

Table 2: Distribution of geographical distances (Haversine distance in km) for Germany
and the Netherlands.

We use open data from OpenStreetMap and publicly available register data to guarantee
reproducibility. For Germany, the German hospital register is used [6]. The addresses are
available online and have been geo-coded with R [30] using tmaptools [39]. The dataset
contains 2,322 locations of hospitals in Germany. As a proxy for patient residential ad-
dresses, the locations of 261 ‘general stores” from OpenStreetMap are used and provided
by [12]. For the Netherlands, only OpenStreetMap data provided by [12] is used. Here,
3,006 schools are selected. The 292 ‘kiosks’ locations are used as a proxy for student res-
idential addresses. We consider using general stores and kiosks as a proxy for residential
addresses a feasible approach, given that these small shops are usually located within or
close to residential areas. For details on the OpenStreetMap data, see [31]. The shape-
files of the geographical boundaries used in this study are publicly available and obtained
from [11]. Figure 2 shows the geographic locations (bounding box not shown).
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Data from both countries will be analyzed separately. In both analyses, the distances
between all geo-locations are considered. Those are for Germany, 2,322 x 261 = 606, 042,
and for the Netherlands, 3,006 x 292 = 877, 752 geographical distances.

Figure 2: Geographical boundaries of Germany and the Netherlands. The spatial distribu-
tion of hospitals (green dots) and general stores (red dots) in Germany and schools (orange
dots) and kiosks (blue dots) in the Netherlands are shown.

5 Evaluating the method

The evaluation of the utility of the proposed method consists of various steps. When using
this method in practice, these evaluation methods can also be used to find the number of
random points R,, needed, given the required amount of accuracy in the proxy. First, Pear-
son’s correlation coefficient is used to evaluate the relationship between the true distance
and the proxy. As true (geographical) distances, the Haversine and the Vincenty distances
are used. The latter is computationally more intensive but more accurate as it assumes an
elliptic shape of the globe compared to the Haversine distance assuming a sphere [16,40].
Often, these two measures yield almost identical results [23,28]. The results using only one
sampled point are compared to those using up to 300 sampled points to compare for the
influence of the number of sampled points (thus the number of triangles used to compute
the average surface). We use the relative root mean squared error (RRMSE) to assess the
proxy’s performance. The RRMSE is obtained as
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10 KLINGWORT AND REDLICH

1 Tk * 2
MSE= Zj: (4 - )
RRMSE = 100 Yoro

mp i L
The superscript “+” denotes that min-max normalized values are used. Given the different
units for the geographical and proxy values, the RRMSE is based upon min-max normal-

ized values (feature scaling), which linearly transforms both distances measures d;; and d;;
into the interval [0, 1]. By this, the units are made dimensionless and comparable.

dij — min(d;;) e sz‘j - min(dij)

*

Y max(di;) —min(di;)" 7 max(d;;) — min(d;;)

* p—

In the second step, it is evaluated if the results are consistent for smaller and larger dis-
tances. Again, Pearson’s correlation coefficient is used. However, in this step, the geo-
graphical distances are divided into two groups (smaller than the mean distance and larger
than the mean distance), and the geographical distances are compared by group to the
proxy. For the means, see Table 2.

Third, to study the method’s variance and convergence, a Monte Carlo simulation is
conducted. We generated 1,000 random inputs for different numbers of sample points
chosen (thus, the number of triangles). We calculate the proxy’s sample variance and eval-
uate the number of iterations needed for convergence. Ideally, the results should show a
small variance, and convergence should be achieved quickly.

Finally, it is evaluated if the distribution of the proxy remains similar to the distribution
of the true distance. The Wasserstein Distance (also known as Earth Mover Distance) is
used to do so. The Wasserstein distance reveals the minimum ‘cost’ needed to get from one
distribution to another. Thus, similar distributions have a lower Wasserstein distance than
dissimilar distributions. Here, the min-max normalized values are also used.

6 Results

6.1 Correlations and performance

Figure 3 shows for Germany and the Netherlands separately the Pearson correlation coeffi-
cient between the true distances and the proxy for the different number of sampled points
used. For the true distance, the Haversine and the Vincenty distances are compared. There
is no noticeable difference in the correlation coefficient when using the Haversine and Vin-
centy distance. Therefore, the Haversine distance will be used in subsequent analyses given
its less computational effort.

Comparing the results by the number of random points (R,) used, one random point
achieved a moderate and positive correlation (r=0.49 Germany, r=0.58 Netherlands). The
correlation increases continuously with an increasing number of random points. A consid-
erable increase can be observed up to and including ten random points (r=0.83 Germany,

WWwWWw.josis.org


http://www.josis.org

PRESERVING PRIVACY OF SPATIAL DISTANCES USING RANDOMIZED GEOMETRIC SURFACE CALCULATIONS 11

r=0.90 Netherlands). After ten random points, the correlation increases only minorly, as
seen from the flattening curve. Considering the Haversine distance, the largest correlation
in this experimental setting for the German and Dutch data is achieved with 300 random
points (r=0.93). Considering the Vincenty distance, the largest correlation in this exper-
imental setting is achieved with 200 points for Germany (r=0.93) and 300 points for the
Dutch data (r=0.98). It can be expected that the correlation will also increase with an in-
creasing number of random points. However, the results show that a strong correlation can
be achieved with a small number of random points. Comparable results were found for the
Spearman correlation coefficient (results not shown). Thus, the method preserves the order
reasonably well.

@ Germany Netherlands

Vincenty (ellipsoid) distance
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Figure 3: Correlation coefficient between geographical distance measures (Haversine dis-
tance in the top panel, Vincenty (ellipsoid) in the bottom panel) and proxy split by country
(Germany in green, the Netherlands in orange). The x-axis shows the number of randomly
sampled points used to obtain the proxy and the y-axis shows the correlation coefficient.

Moreover, it can be seen that the correlations obtained using the data from the Nether-
lands are larger than those obtained from Germany, indicating that small distances might
be better preserved than larger distances. Thus, we grouped distances into smaller and
larger distances and calculated group-wise correlations. Smaller distances were defined as
being below or equal to the mean distance (the used means are shown in Table 2). Larger
distances were defined as being larger than the mean distance. The results are shown in
Figure 4. The lowest correlations are obtained for the large distances in Germany. The
small distances in Germany achieve about the same correlations as the large distances in
the Netherlands. The highest correlations are found for the small distances in the Nether-
lands. Thus, while the method yields good correlations, the method preserves smaller
distances better than larger distances.
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Figure 4: Correlation coefficient between geographical distance measures (Haversine dis-
tance) and the proxy, averaged over number of random points and split by country (Ger-
many in green, the Netherlands in orange).

To measure the performance of the proxy, we used the RRMSE (shown in Figure 5). With
only one random point, an RRMSE of about 100 % for both datasets is achieved. However,
the RRMSE decreased considerably in both datasets when the number of random points
increased. The RRMSE becomes stable at around 100 random points. With more than 100
random points, no further substantial decrease in the RRMSE was observed. With 300
random points, the RRMSE is about 18 % for Germany and the Netherlands (see Section 7
for a discussion on this result).

6.2 Monte Carlo simulation

For the Monte Carlo simulations, the Haversine distance was used, given that comparable
results as with the Vincenty (ellipsoid) distance are achieved with less computational effort.
Table 3 shows the point estimates based on the original data and the MC-based mean,
standard error, and confidence interval. Only the results with one random point for the
Netherlands and 300 random points for Germany are shown. The MC mean is close to the
point estimates (rounded values are shown). The standard errors are near zero, and the
confidence intervals are narrow.

Country Random Point MC MC MC

points  estimate mean standard error confidence interval
Germany 300 0.93 0.93 0 [0.93, 0.93]
Netherlands 1 0.58 0.58 0 [0.58, 0.58]

Table 3: Results of Monte Carlo simulation. The number of random points, the point esti-
mate, the MC mean, the MC standard error, and the MC confidence interval are shown.
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Figure 5: Relative root mean squared error split by country (Germany in green, the Nether-

lands in orange).

The convergence of the estimates was also analyzed. Figure 6 shows that the point
estimates already became stable around 50 iterations. That holds for both the results based
on one and 300 random points. Hence, the MC mean converges fast to the true mean.
The upper and lower limits of the MC confidence interval limits take up to 500 iterations
to converge. These findings are evident both for datasets. Thus, the method yields small

variances and converges fast.
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(a) German dataset and 300 random points. The
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Figure 6: Convergence plots based on 1,000 Monte Carlo simulations. The left panel shows
the German dataset and the right panel shows the dataset of the Netherlands. The X-axis
shows the number of samples, and the y-axis shows the MC mean.
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6.3 Wasserstein distance

Finally, we report the Wasserstein distance for both datasets for the proxy based on one,
100, and 300 random points. The results are shown in Table 4.

Country Random points ~ Wasserstein
Germany 1 0.206
Germany 100 0.014
Germany 300 0.014
Netherlands 1 0.184
Netherlands 100 0.057
Netherlands 300 0.035

Table 4: Wasserstein distances by country and number of random points.

As seen for both countries, the minimum ‘cost’ needed to get from one distribution to
another is much smaller, with 300 points, than with one random point as seen by the
Wasserstein distance close to zero. Hence, the more random points, the closer the proxy
distribution is to the original distance distribution. This is shown in Figure 7.

Haversine T imre—01 Haversine _—mmmmem—w00
r=300 /x =300 amee— 000
=100 e =100 «af—
=50 _ccnt r=50 e 0
B ——mm— B
r=1 r=1

0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
Min-max normalized density Min-max normalized density
(a) German dataset. (b) Dutch dataset.

Figure 7: Distribution plots of min-max normalized true distances (Haversine), and min-
max normalized proxy values for different numbers of random points. The left panel shows
the German dataset and the right panel shows the dataset of the Netherlands. The X-
axis shows the density; the y-axis shows different sets of random points and the original
distance.

6.4 Hardening against attacking approaches

Since no coordinates are released, it remains unknown in which area the locations are, and
since no true distances are released, it cannot be approximated straightforwardly. However,
especially in rural areas spatial points are prone to being re-identified easily. To reduce the
risk a population-density-based error term is introduced for low-population density areas.
We tested this approach using the German dataset and population information on
NUTS-3 level, which is a classification of administrative and municipal districts. For each
municipal district (M, with m = 1, ..., 417), the population totals (U,,) and population den-
sities per km? (D,,) are obtained from official statistics [37]. We tested the following three
error terms to account for the low population density areas when obtaining the proxy:
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i - {1 ﬁ if Uy, E. [P1o, Pao),
A otherwise.

A, — A'log(ﬁ if Uy, € [Pro, Paol,
? A otherwise.

i A oy 1 Un € [Pro, Paol,
’ A otherwise.

When U, is within the 10"" or 20" percentile of its distribution, the proxy is multiplied
by an error term. Otherwise, the proxy without an error term is used. Thus, ensuring that
only low population densities are penalized. Figure 8 shows the results.
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Figure 8: Correlation coefficient between Haversine distance and different versions of the
proxy. The x-axis shows the number of randomly sampled points used to obtain the proxy
and the y-axis shows the correlation coefficient. The color and shapes indicate the version
of the proxy information.

The correlation coefficient between the original data and the proxy without the error
term is shown in red as a benchmark. Adding an error term affects areas with lower popu-
lation density, reducing the correlation coefficient. Areas with higher population densities
are not penalized and, thus, do not contribute to the decreasing correlation. Differences
between the error terms are small. With 300 random points, the correlation coefficient for
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the proxy without error term (A) is 0.93 (see also Table 3). For A;, A, and A3, the coef-
ficients are 0.6, 0.64, and 0.67 (with 300 random points). These results demonstrate that
all approaches distort the relationship between the original distances and the proxy in ar-
eas with lower population densities. While the decrease in correlation is considerable, the
resulting coefficients still indicate a moderate-strength relationship.

6.5 Re-identification risk

The risk of re-identifying a geomasking method is usually assessed using spatial k-
anonymity, defined as the number of potential locations in a defined region for a given
masked location [41]. Such a method is not applicable to a geomasking method that does
not release coordinates but contextual information. However, an individualized attack
method is usually used for those methods, see, e.g., [21].

We conducted a re-identification risk assessment to evaluate the proposed method’s
privacy-preserving capability. The approach assumes that an attacker attempts to recon-
struct the original geographic distances from the proxy values (i.e., average triangle sur-
face areas) using machine learning techniques. It is also assumed that a potential attacker
accessed a fraction of the original dataset. The leaked data includes the true Euclidean dis-
tances and their corresponding proxy values. We considered this dataset as training data.
A predictive model (random forest using default settings) was trained using this dataset.
The trained model was then used to estimate the remaining true distances (test set). The
accuracy of this prediction was assessed using the Mean Absolute Error (MAE) between
the true and the predicted distance. This metric informs about the potential privacy leak-
age: lower predictive accuracy indicates higher privacy protection. The simulation was
performed using the following input parameters:

* Random points: A numeric vector specifying the number of random points that
were used to generate the proxy in the leaked data. Values used: 1 and 300.

* Leakage fraction: A numeric vector representing the proportion of the data
leaked to be used for training the model. Values used: 1 % and 10 %.

* Hardened: A logical vector indicating whether the hardening method discussed in
Section 6.4 was used. Values used: TRUE and FALSE.

The results of this attacking scenario are shown in Figure 9. Each panel compares the
predicted geographic distances (via a machine learning model) against the true observed
distances. Since we used a large dataset and points can overlap in the figure, the density of
points is shown in a gradient from yellow (few observations) to blue (many observations).
Each subplot varies along three key dimensions: Number of random points used to com-
pute the proxy (1 or 300), fraction of training data leaked (1 % or 10 %), and whether the
hardening method was applied (TRUE or FALSE). Each plot also reports the Mean Abso-
lute Error (MAE), a measure of prediction accuracy (lower MAE = higher risk, i.e., better
re-identification).

If more random points are used, the relationship between the proxy and the original dis-
tance will be much closer, which enables more accurate re-identification (lower MAE), thus
compromising privacy. However, an MAE of 51 km is still large, and the re-identification
risk is still small (in scenarios without hardening). The hardening method increases the
MAE, indicating a reduced risk of re-identification. The hardening method is especially
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effective when a few random points are used to create the proxy. Leakage impact is mini-
mal with 1 point or hardening. Increasing the training data leak from 1 % to 10 % does not
affect MAE when either only one random point is used or hardening is applied. Our results
demonstrate that despite the underlying monotonicity assumption, the proxy transforma-
tion introduces sufficient geometric ambiguity (see the MAE values) to prevent accurate
distance reconstruction, thereby contributing to the privacy-preserving capability and data
confidentiality.

Moreover, even if the underlying true distance is predicted, information about the
data’s general location is still needed to transform the distance matrix to coordinates.

Random points: 1 Random points: 1 Random points: 300 Random points: 300
Training data: 1% Training data: 10% Training data: 1% Training data: 10%
Hardened: FALSE Hardened: FALSE Hardened: FALSE Hardened: FALSE
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Figure 9: Re-identification risk assessment based on adversarial inference split by different
scenarios of the geomasking method and by different attacking scenarios.

7 Discussion and conclusion

Geomasking methods aim to maintain the use of spatial information while reducing the
risk of re-identification. To demonstrate the usefulness of the masked spatial information,
we evaluated (1) the relationship between the true distance and the proxy, (2) the consis-
tency of the method for smaller and larger distances, (3) the variance and convergence of
the method and (4) the comparison of the distribution of the true distance and the proxy
distances. The results showed that the obtained proxy strongly correlates with the true
distance and that the underlying distribution of the original distances is preserved. Thus,
the proxy information can be used in clustering and spatial autocorrelation methods, for
example.

The results achieved by the method are of good quality. An RRMSE of about 18 %
was achieved for the German dataset. Relating the 18 % error to the four minimum and
maximum values provided in Table 2 results in errors between 0.0018 km and 157.2 km. To
consider this error in a practical example, we take the ten nearest hospitals per residential
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address and average these distances over all residential addresses. The mean distance to
the ten nearest hospitals would be about 3 km for the Netherlands and about 13 km for
Germany. Assuming an average speed of an ambulance of 60 km/h, the time needed for
these distances would be 3 minutes for the Netherlands or about 13 minutes for Germany.
Considering the error of 18 %, it would be about 0.5 km more or less for the Netherlands
and about 2.3 km more or less for Germany. For the Netherlands, this would reduce the
required time to about 2.5 minutes or increase it to about 3.5 minutes, and for Germany,
it would reduce the required time to about 10.7 minutes or increase it to 15.3 minutes. In
non-emergency cases, differences of less than 30 minutes are typical without consequence
on patient outcome [17,18,29].

As no coordinates are released and no true distances are released, it remains unknown
which area the locations are in, and it cannot be approximated straightforwardly. However,
given that the algorithm is known, it is possible to simulate the relationship between the
original distances and the proxies if the coordinates of one source are known, e.g., the
points of interest. By comparing the given proxies with the simulated proxies, the original
distances could be derived. This could lead to potential re-identifications, especially in
regions with low population density. The fact that the bounding box is unknown makes this
more difficult. As a solution, a population-density-based error term could be introduced
when calculating the proxy to overcome this problem. By this, the proxies in areas with
lower population densities get a penalty term. A test of this hardening method showed
that this will slightly distort the relationship between the proxy and the original distance
only for rural areas.

Our evaluation of the re-identification risk using machine learning techniques to re-
construct the original distance from the proxy values showed that sufficient geometric
ambiguity is introduced, especially with the hardening method, so an accurate distance
reconstruction is not achieved. Other attacking approaches, such as graph-theoretical ap-
proaches, can, in principle, be used as well to attack every geo-masking method when
external information about the data is available [21,22]. A comprehensive risk analysis of
the proposed method is an ongoing project of the authors.

To conclude, we proposed and discussed a new method to preserve spatial privacy in
large distance matrices with medical and social microdata examples. Of course, the method
applies to other spatial datasets as well. The method is straightforward to implement and
requires neither excessive computational effort nor exceeding memory requirements. We
consider this method a valuable enhancement of the methodological toolbox when working
with masking methods for geolocation data.
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Appendix A: Relationship between distance and expected
surface area

We provide a mathematical justification for the assumption that the expected surface area
Axy of the triangle AXY R, constructed from a fixed pair of points X,Y € R? and a
uniformly random point R, € R?, increases monotonically with the Euclidean distance
dxy between X and Y.

Let:

d = dxvy be the fixed distance (the base of the triangle),

R, = (zRr,yr) be a uniformly drawn random point from a rectangular region (i.e.,
the bounding box),

hxv R, be the perpendicular height from R,, to the line segment XY,

* axyr, = 3d- hxyr, be the area of the triangle AXY R,,.

We define the expected area over n samples as:

E[Axy] =E

11 1
f§ Zd-h:|l = =d-E
n 2d hl] 2d (R,

where h; = hxyr,, and E[h] is the expected height of the triangle given random sampling
of R,.

Key Assumption

We assume that the random points R,, are drawn uniformly over a region that does not
systematically favor positions closer or farther from the segment XY, regardless of the
length of d. The bounding box constructed in Step 1 is designed to ensure this.

Result

Under this assumption, the expected value E[h] is approximately independent of d, and
hence:

E[Axy] xd.

This means the expected surface area grows linearly with the base length. Therefore, for
two pairs (Xl, 3/1) and ()(27 Yg), if dX1Y1 > dXzer then E[Axlyl] > E[Ax2y2].

Conclusion

The expected proxy value Axy preserves the rank order of original distances dxy. While
the individual triangle areas depend on both d and the stochastic height h, their expected
value scales linearly with d under uniform sampling, justifying the use of A xy as a distance

proxy.

JOSIS, Number 31 (2025), pp. 3-25



1

2

4
5
6

10
11

12
13
14
15
16
17
18
19

20

24 KLINGWORT AND REDLICH

Appendix B: Empirical simulation of the distance-area rela-
tionship

To empirically validate the theoretical assumption that the expected triangle surface area
increases linearly with distance, we conducted the following simulation in R. For multi-
ple baseline distances d, we applied the proposed geomasking method and visualized the
baseline distance and their yielding mean surface area using 1, 10, 50, 100, and 300 points.
The R code for this simulation is as follows:

# Set seed for reproducibility
set.seed(21082024)

# Function to compute area of triangle given two fixed points and one random point
triangle_area <- function(xl, yl, x2, y2, xr, yr) {

d <- sgrt ((x2 - x1)"2 + (y2 - yl)"2)

h <- abs((x2 - x1)x(yl - yr) - (x1 - xr)(y2 - yl)) / d

area <- 0.5 » d x h

return (area)

}

# Simulation parameters

n_random <- 10 # number of random points per baseline
distances <- seq(l, 10, by = 1) # varying baseline distances
mean_areas <- numeric (length(distances))

# Simulation loop
for (i in seg_along(distances)) {
d <- distances[i]
x1l <= 0; yl <= 0
X2 <- d; y2 <- 0 # horizontal segment of length d
rand_x <- runif (n_random, -5, 15)
rand_y <- runif (n_random, -10, 10)

areas <- mapply (
triangle_area,

x1l, yl, %2, y2,
rand_x, rand_y

mean_areas([i] <- mean (areas)

# Plotting the results

plot (distances, mean_areas, type = "b", pch = 19,
xlab = "Baseline distance",
ylab = "Mean surface area",
cex.axis = 2,
cex.lab = 2)
abline (1lm(mean_areas ~ distances), col = "red", lty = 2)

Listing 1: Simulation of proxy surface areas for distance masking
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Results of empirical simulation of the distance-area relationship

Each panel is based on a different number of random points. The x-axis shows the baseline
distance. The y-axis shows the average surface area. The red line is a fitted linear regression
model where the average area is the dependent variable and the baseline distance is the
independent variable.

As can be seen, even with a few random points, the mean average surface area increases

with increasing baseline distances. Thus, if d; < da < ... < d,,, then A; < Ay < ... < A,,.
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Figure 10: Results of empirical simulation of the distance-area relationship for selected
number of random points.
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