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Abstract: Ubiquitous sensor stations continuously measure several geophysical fields over
large zones and long (potentially unbounded) periods of time. However, observations can
never cover every location nor every time. In addition, due to its huge volume, the data
produced cannot be entirely recorded for future analysis. In this scenario, interpolation, i.e.,
the estimation of unknown data in each location or time of interest, can be used to supple-
ment station records. Although in GIScience there has been a tendency to treat space and
time separately, integrating space and time could yield better results than treating them
separately when interpolating geophysical fields. According to this idea, a spatiotemporal
interpolation process, which accounts for both space and time, is described here. It oper-
ates in two phases. First, the exploration phase addresses the problem of interaction. This
phase is performed on-line using data recorded from a network throughout a time window.
The trend cluster discovery process determines prominent data trends and geographically-
aware station interactions in the window. The result of this process is given before a new
data window is recorded. Second, the estimation phase uses the inverse distance weighting
approach both to approximate observed data and to estimate missing data. The proposed
technique has been evaluated using two large real climate sensor networks. The experi-
ments empirically demonstrate that, in spite of a notable reduction in the volume of data,
the technique guarantees accurate estimation of missing data.

Keywords: spatiotemporal data mining, interpolation, clustering, sampling, time-series
regression, trend discovery
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1 Introduction

Interpolation is a key technique used to supplement, smooth, and standardize observa-
tional data. Historically it has been considered a crucial task in spatial data analysis. Con-
sequently, a plethora of spatial interpolation methods exist in the literature, both determin-
istic, such as inverse distance weighting [39] and radial basis functions [28], and stochastic,
such as Kriging [5]. These techniques have been largely used to support transformations
between different discrete and continuous representations of a geophysical field: to change
over from irregular point or line data to a raster representation or to re-sample between
different raster resolutions [33].

So far spatial interpolation methods have been mainly designed to estimate any un-
known measure of a geophysical field at unsampled locations in the space. The estimate is
often based upon actual measures which are spatially sampled in a geographic information
system (GIS). The rationale behind this purely spatial estimate of a field is well-captured
by Waldo Tobler’s First Law of Geography: “everything is related to everything else, but
near things are more related than distant things.” Any spatial interpolator accounts for this
law, including within its formulation the consideration of a stronger correlation between
data points which are closer than for those that are farther apart.

The recent ubiquity of sensing technologies is providing a huge availability of spa-
tiotemporal data. As a consequence, spatiotemporal interpolation is becoming an emerg-
ing research area which aims at solving critical problems that could not be solved using
only spatial interpolation methods. Even though spatial interpolation theory has a long
history, the problem of interpolating a dynamical (i.e., evolving with time) geophysical
fields need to be addressed in a space-time domain. By following a spatiotemporal ap-
proach which has recently emerged in GIScience literature (e.g., [15], [10], [47]), traditional
spatial techniques for the interpolation of geophysical fields have been supplemented by
temporal methods, in order to handle spatiotemporal information properly. Two main
strategies have been followed to interpolate data in a continuous space-time domain: the
spatial-interpolation-primitive strategy and the temporal-interpolation-primitive strategy.
The spatial-interpolation-primitive strategy reduces spatiotemporal data to a sequence of
snapshots, so that spatial interpolations can be employed [27]. In this way, the interpolator
is once again spatially defined and temporal interpolation is carried out on interpolation
results obtained at the same location over consecutive snapshots [2]. In the temporal-
interpolation-primitive strategy, a time series of data is temporally interpolated at every
location, then the interpolated values are used as a sampled measurement in ordinary spa-
tial interpolation functions [24]. This strategy is expensive to implement because temporal
interpolation functions need to be calculated at every spatial location with at least one mea-
surement at a time. On the other hand, the use of a spatiotemporal interpolation-primitive
strategy has recently been proposed in the literature. In particular, the authors of [26] have
advocated the importance of interpolating data by accounting for the existence of a tem-
poral pattern on spatial measures of time-evolving geophysical fields. This consideration
highlights the importance of detecting the spatiotemporal knowledge that models the ob-
served data. This knowledge can be considered to achieve robust spatiotemporal interpo-
lation functions. In particular, the interpolation approach in [26] (adopted to interpolate
air-pollution activity) is based on a naive spatiotemporal interpretation of Tobler’s Law,
according to which pollution data that is closer in the space-time domain is expected to be
more alike than those that are farther apart. Based upon this idea, the formulation in [26]
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can be considered a view limited to the expectation of constant or nearly constant trends in
time.

In this paper, the spatiotemporal strategy is pursued and an interpolator, called TRECI
(trend cluster based spatiotemporal interpolator), is defined. This method is designed to
interpolate geophysical fields, whose spatial and temporal evolution is periodically mon-
itored through a remote sensing scenario. The prominent spatial and temporal patterns
which emerge from the evolution of a field are modeled by means of trend clusters. An
inverse distance weighting interpolation is tailored to estimate the unknown field value
at any location and at any time. The estimate is based on knowledge derived from the
observed trend clusters.

Trend cluster discovery is achieved as an on-line process. According to the definition
in [1], the input (data snapshots) of a system that performs the process on-line does not
arrive as a batch, but as a sequence of input portions (i.e., time-defined windows of snap-
shots). The system reacts in response to each incoming window giving in output the set of
discovered trend clusters. A trend cluster [4] is a cluster of sensors which transmits data
whose temporal variation, called a trend polyline, is similar along a time horizon. Trend
clusters discovered from each window of snapshots are permanently stored in a database.
They provide a compact model of prominent spatial and temporal dynamics in data. In
particular, the cluster segmentation of sensors determines a partitioning of the networked
surface, while each trend associated with a cluster describes the evolution of that cluster
over time. Intuitively, the sensors grouped in a cluster provide a discrete representation
of the region covered by the cluster. A shape-dependent sampling technique is used to
reduce the number of sensors needed to accurately describe the extent of each cluster. A
polynomial is fitted on each trend time series, in order to capture the evolution of intra-
cluster measures over time. For each trend cluster, both the sensors sampled in the cluster
area and the polynomial approximation of the time series are stored in a database. This
database constitutes the knowledge base for any future (spatiotemporal) interpolation.

The inverse distance weighting (IDW) interpolation scheme is used to estimate values
at any spatial location. The choice of a deterministic interpolator like IDW is motivated by
the comparative studies [19, 25, 26] pursued over the years. These studies conclude that
stochastic Kriging methods approach the theoretical limit for the variance of the estimation
error (due to the Gauss-Markov theorem), but only at the cost of significantly increasing
the processing time [23]. On the other hand, deterministic methods, and in particular the
inverse distance weighting methods, share the strength of being relatively accurate and
fast interpolators. Specifically, simplicity, speed in calculation, ease of programming, and
acceptable results for many types of geophysical data are all features that have led to the
approach being widely adopted in remote sensing intensive applications. In TRECI, the
IDW mechanism outputs a weighted average of the nearby points of the trend cluster rep-
resentation for the observed data in the spatiotemporal proximity of the unknown point.

Therefore, the main contributions of this paper are:

1. the use of trend cluster discovery to model a trend-based partitioning of the net-
worked surface; this partitioning encapsulates the spatiotemporal knowledge re-
quired to interpolate the field at any location and at any time;

2. the determination, for each trend cluster, of a shape-dependent sample of clustered
sensors and of a polynomial trend time series, stored in the database; and
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3. the exploitation of the inverse distance weighting interpolation which provides, for
each geographic location (x, y) and time point t, a weighted average of the key sen-
sors which are close to (x, y) at a time horizon comprising t.

The paper is based on a preliminary work [3], where the idea of a spatiotemporal inte-
grated trend cluster interpolation was presented. However, the previous paper is extended
in the following directions:

1. an extensive discussion of the related works on spatiotemporal interpolators (see Sec-
tion 2);

2. a revised and detailed illustration of the trend cluster discovery algorithm (see Sec-
tions 3 and 4.1);

3. the evaluation of simple linear interpolation as an alternative to the polynomial in-
terpolation (see Section 4.3.2); and

4. new experiments, including an additional sensor data network use to evaluate how
TRECI is able to capture on-line the spatiotemporal knowledge required for any fu-
ture interpolation. Experiments also highlight that TRECI is able to work for large
networks, producing accurate interpolation even when the transmission frequency is
lowered and/or the sparseness of the transmitting sensors is increased (see Section
5).

The paper is organized as follows. In Section 2 we discuss the related works regarding
spatial and spatiotemporal interpolators together with the main motivations of this work.
In Section 3 we introduce the snapshot data model for sensor data and we define the trend
clusters. In Section 3.3 we provide the formulation of the spatiotemporal interpolation
task in a sensor network. In Section 4 the TRECI spatiotemporal interpolation is described.
Results from the two real datasets and discussions are reported in Section 5 and conclusions
are drawn in Section 6.

2 Related work and contribution

Studies of spatial interpolation were initially encouraged by the geographical and geo-
physical analysis of ore mining, water extraction or pumping, and rock inspection [6]. In
these application fields, interpolation methods are required as the main resource to recover
unknown information and account for problems like missing data, energy saving, sensor
default; as well as to provide support for data summarization, and investigation of spatial
correlation between observed data [22]. More recently, interpolation methods have been
needed to handle spatiotemporal data, potentially in a streaming scenario. This paper con-
tributes to the investigation of spatiotemporal interpolators in a remote sensing scenario.

2.1 Spatial interpolators

The spatial interpolative primitives, integrated in the majority of geographic information
systems, estimate a geophysical quantity at any geographic location where the field mea-
sure is not available. The interpolated value is derived by making use of the knowledge
of the nearby observed data and, sometimes, of some hypotheses or supplementary in-
formation on the data field. Inverse distance weighting (IDW) [39], radial basis func-
tions (RBF) [28] and Kriging [5] are the most common spatial techniques adopted in these
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cases. These techniques are used to deal with the irregular sampling of the investigated
area [16, 41] or with the difficulty of describing the area by the local atlas of larger and
irregular manifolds. IDW and RBF, which are both deterministic interpolators, use mathe-
matical functions to calculate an unknown field value in a geographic location based either
on the degree of similarity (IDW) or the degree of smoothing (RBF) in relation to neighbor-
ing data points. Both methods share with Kriging the idea that the collection of field ob-
servations can be considered as a product of a correlated spatial random field with specific
statistical properties. In Kriging this correlation is used to derive a second-order model of
the field (the variogram). The variogram represents an approximate measure of the spatial
dissimilarity of the observed data. IDW interpolation is based on a linear combination of
nearby observations with weights proportional to a power of the distances. It is a heuristic
but efficient approach justified by the typical power-law of the random field spatial corre-
lation. In this sense, IDW accomplishes the same strategy adopted by the more rigorous
formulation of Kriging [19, 25, 26].

Several studies have arisen from these base spatial interpolation approaches. In [44],
the missing data of a dense network are recovered by a Kriging interpolator. By consider-
ing that the computational complexity of a variogram is cubic in the size of the observed
data [6], the variogram calculus, in this study, is sped-up by processing only the areas with
information holes, rather than the global data. In [42], IDW and 1-nearest neighbors have
been used to interpolate a grid of rainfall data and re-sample data at multiple resolutions.
In [30], IDW is again investigated and formulated in an adaptive way which depends on
the varying distance-decay relationship in the area under examination. The weighting pa-
rameters are varied according to the spatial pattern of the sampled points in the neighbor-
hood. The method proves more efficient than ordinary IDW and in several cases also better
than Kriging. These studies contribute to highlighting IDW as a deterministic, quick, and
simple interpolation method which also provides accurate interpolation results. On the
other hand, Kriging is based on the statistical properties of the random field and, hence, is
expected to be more accurate regarding the general characteristics of the observations and
the efficacy of the model. In any case, the accuracy of Kriging is highly dependent on a
reliable estimation of the variogram [16, 38] and the variogram computation cost scales as
the cube of the number of observed data [5]. This cost is prohibitive in evolving sensing
environments, where statistical properties of a monitored field may change over time. In
data mining, the change of the underlying properties over time is usually called concept
drift [46]. It is noteworthy that the concept drift, expected in evolving data, can be a serious
complication for Kriging. In fact, it may impose the repetition of costly computation of the
variogram each time the statistical properties of the field change significantly. On the other
hand, experimental studies reported in the literature (e.g., [30]) show that the accuracy of
an IDW interpolator often approaches the accuracy of a Kriging interpolator, especially for
smooth fields [12]. These considerations motivate the use of an interpolator which is accu-
rate enough and whose learning phase can be reasonably run on-line with the streaming
activity.

2.2 Spatiotemporal interpolators

Recently more research efforts have focused on joining traditional temporal data mining
techniques with spatial interpolators. The main purpose of these studies is to transfer
mature temporal data mining techniques into a joint spatiotemporal set of interpolation

JOSIS, Number 6 (2013), pp. 119–153



124 APPICE, CIAMPI, MALERBA, GUCCIONE

methods able to catch the geophysical nature of data that is both spatially and temporally
correlated. The interpolation methods are based on the idea that the sequence of observa-
tions coming from a sensor can be regarded as outcomes of a stochastic process corrupted
by random noise. Hence, the model of such processes can be described (and then predicted)
by means of relatively few parameters [9, 14, 40].

Initial studies offered a partial integration of the spatial and temporal methods by firstly
performing spatial interpolation and then reducing temporal interpolation to the applica-
tion of simple methods (such as linear or spline interpolation, [32, 36]) to the sequence of
snapshots of spatially interpolated data [26]. The alternative has also been explored, i.e.,
time series of data were temporally interpolated for each relevant location and then were
used as sampled observations for the application of a traditional spatial interpolator [24].

The true integration of the spatial and temporal components is a relatively new research
field. It is based on the application of a dynamic model, like the Kalman filter [18], or the
Markov Random field [17], to consecutive snapshots of data, so that the spatial interpola-
tion takes place according to a set of temporally changing parameters. In [20], Kriging is
used for the spatial interpolation of medical images, but the statistical model of the var-
iogram is updated according to a Kalman filter of the temporal observations. In [11] the
impact of an irregular grid of sensors on data compression is analyzed and the nearest
neighbor is proposed as the interpolator scheme to obtain a better data compression. In-
stead temporal interpolation is adopted to assess the possible sensor clock misalignment,
but no solution is provided to provide an estimate in any spatiotemporal location of the
sensed area. In [37] a methodology for the spatial and temporal interpolation of air quality
data is illustrated. The methodology has two steps. First, non-stationary time series anal-
ysis methods are used to interpolate the data sets over periods where measurements are
missing and to decompose the time series into trend and harmonic components. Then a
preliminary analysis of spatial relations within the data sets and a spatiotemporal model of
log-transformed data are computed. The model consists of trend and noise and represents
the spatiotemporal variations in the data applied to predict the air pollution variations at
unsampled points across time and space.

2.3 Paper contribution

The spatiotemporal interpolation algorithm proposed in this paper provides a regressive
time dynamic model of the random field. This model is a polynomial model of a spatiotem-
poral aggregate (named trend cluster) of the data field. The IDW interpolator is adapted
to exploit such a time-variant spatial model and perform an estimation of data in any lo-
cation of the space-time domain. Hence, the novelty of the proposed method consists in
the usage of summarized spatiotemporal information from the sensed observations to infer
accurate IDW interpolated values. According to the discussion reported in Section 2.1, the
choice of an IDW interpolator allows the efficient and accurate recovery of the original data
discarded by the summarization process, as well as the achievement of relatively accurate
estimated measures where they are not available, supposing the general hypotheses on the
random field under examination to be reasonable (i.e., a power-law decaying correlation
function for spatially stationary data [16] and a slow time-varying evolution of the statistics
of the observations).

It is worth noting that a distinctive characteristic of the proposed algorithm is that it
has been specifically designed to deal with a continuous stream of spatiotemporal data.
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This represents a major difference with respect to the traditional spatiotemporal interpo-
lators that are based on the analysis of a volume of spatiotemporal data that, although
big enough, are always bounded in time. In a sensing application, a (large) amount of
geo-referenced data arrives continuously at a high rate and is possibly subjected to data
distribution drifts. This work advocates the necessity of an interpolator which accounts for
this intrinsic dynamism in a sensor data stream.

3 Basics and problem formulation

The streaming environment considered in this work basically defines an in situ-sensing
scenario which can be represented by the following premises.

1. The sensor stations are enumerated with a progressive number in the network and
geo-referenced to geographic (latitude and longitude) coordinates.

2. The sensor stations routinely measure the random field at consecutive time points
and transmit measured data to a central server; stations are synchronized at the trans-
mission time.

3. The spatial location of each networked station is known, distinct, and invariant in the
network, while the transmission status of a station may change in time since a sensor
can be switched on or off at any time.

Concerning premise (2), it is noteworthy that for many networks used to monitor geo-
physical fields (e.g., pollution, weather, irradiation) measures occur at regular time inter-
vals. In any case, the processing framework we propose here is more general and fits in
both periodic and patchy transmissions. Based upon these premises, the snapshot model
and the count-based window model can be adopted to represent the random field observa-
tions as they are sampled at a specific time through the network. The trend cluster model
is chosen to represent the spatiotemporal knowledge of the sensor data dynamics and to
formulate the interpolation task.

3.1 Sensor data stream and window model

Let T be an equally-spaced discretization of the time line and K the network of remote
sensor stations which routinely measure the numeric geophysical random field Z at the
consecutive time points of T . The scenario we consider is that of the measures of Z , sam-
pled by K at the time points of T and sent to a server station. Field measures feed a sensor
data stream that, in principle, can be stored at the server for any future analysis. The com-
munication costs of forwarding the field measures from the sensor stations to the server
station depend on the network topology and the communication protocol. The analysis of
these protocols is out of the scope of this study.

The set of measures of Z sampled by K at a time point t is called field raw or snapshot.

Definition 3.1 (Snapshot or field raw). A snapshot of Z timestamped at t (with t ∈ T ) is the
pair 〈Kt, zt(·)〉 where Kt (Kt ⊆ K) is the set of switched-on stations which produced a data item
at t and zt(·) is the field function :

zt : Kt �→ Z, (1)

which assigns the sensor geographic coordinates (x, y) ∈ Kt to the reading of Z at t.

JOSIS, Number 6 (2013), pp. 119–153



126 APPICE, CIAMPI, MALERBA, GUCCIONE

Though finite, Kt may vary with t as sensors may be switched on or off at a specific
time across the network. At the server station a snapshot can be buffered in an associative
structure which maps a station of Kt to a value of Z .

Definition 3.2 (Sensor data stream). A sensor data stream z(T,K) is the unbounded sequence
of snapshots which arrives continuously, possibly at high rate, from a remote sensor network K at
the consecutive time points of T .

The count-based window [9] is a well-known data model, largely adopted in data
stream mining, concerning the data analysis of the consecutive data segments of a stream.

Definition 3.3 (Count-based window model). Let w be a window size. A count-based window
model decomposes z(T,K) into non-overlapping windows, each one composed of w consecutive
snapshots, that is:

z(T,K) = W
t1→tw

z(T,K), W
tw+1→t2w

z(T,K), . . . , W
t(i−1)w+1→tiw

z(T,K), . . . (2)

where the (i)-th window W
t(i−1)w+1→tiw

comprises snapshots z(T,K), acquired from the time tiw+1

to t(i+1)w of T .

Once a count-based window model is adopted to process a sensor data stream, a buffer
is expected to consume snapshots as they are produced by the remote sensor network. It
“pours” snapshots, window-by-window, into a data-stream knowledge discovery process.

3.2 Trend cluster pattern

A trend cluster is a kind of spatiotemporal pattern [4] that can describe simultaneously both
spatial clusters and data trend dynamics, which emerge in a numeric sensor data stream
z(T,K).

Definition 3.4 (Trend cluster). Let z(T,K) be a sensor data stream, a trend cluster in z(T,K) is
the triple:

(ti → tj , c, ẑ), (3)

where

1. ti → tj is a time horizon such that ti, tj ∈ T and ti < tj ;
2. c enumerates spatially close sensors whose series of field readings in z(T,K) are similar to

each other in the time horizon from ti to tj (or equivalently field data vary according to a
similar trend time series prototype from ti to tj); and

3. ẑ is the trend prototype of c from ti to tj ; it is a time series of cluster aggregate values ẑ(t),
one value for each time point t ∈ [ti, tj ]; each ẑ(t) is the aggregate (median) of the measures
of Z sampled across c at t, that is,

ẑ(t) = median
p∈c

zt(p). (4)

In a count-based window model of the sensor data stream, the trend clusters can be
discovered with the time horizon defined on the time window segmentation (see Figure
1). Trend clusters can be discovered to segment a data window and provide a compact
and informative spatiotemporal representation of the field evolution. Trend clusters can
be stored in a database for future analysis (e.g., interpolation) in place of the windowed
snapshots, which are discarded.
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(a) Clusters

(b) Trends

Figure 1: Trend clusters discovered in a count-based window model of a sensor data stream
with w = 3. The blue cluster groups circle sensors whose measures vary as the blue time
series from t1 to t3. The red cluster groups square sensors whose measures vary as the red
time series from t4 to t6. The green cluster groups triangular sensors whose measures vary
as the green time series from t4 to t6.

3.3 Interpolation problem formulation

Given the geophysical numeric random field Z , whose values are routinely measured
through a remote sensor network K , the goal of the interpolation task is to estimate an
(unknown) measure of such a field at any location of the network region and at any time of
the whole monitoring period. We point out that the estimation of the field measure at loca-
tions out of the region covered by the network or at times out of the observation interval is
called prediction and it requires further hypotheses on the data. This study does not cover
the prediction task.

To address this spatiotemporal formulation of the interpolation task, a common evolu-
tion trend is supposed for observations at nearby sensors. Based upon such a hypothesis,
the task of interpolating unknown data of a field is carried out by using the spatial clusters
and data trend dynamics that underlie the field data sampled by a remote sensor network.
This idea is contrary to that of interpolating directly row data measured at a specific time.
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Let (x, y) be a pair of geographic coordinates and t be a time point. The estimate of Z at
the space-time point (x, y, t) can then be achieved by the inverse distance weighted sum of
the scatter values which surround (x, y) in the trend cluster representation of a processed
sensor data stream.

4 Trend cluster aware inverse distance weighting

(a) TRECI ONLINE

(b) TRECI OFFLINE

Figure 2: TRECI: on-line summarization step and off-line interpolation step.

The interpolation algorithm TRECI operates in two phases. The on-line phase (see Fig-
ure 2(a)) consumes the data snapshots as they arrive from the remote sensor network and
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analyzes the buffered data snapshots, window-by-window, in order to determine a trend
cluster segmentation of the data window. For each window, trend clusters model the spa-
tial variation of the field along the time horizon of the window. Since this model is stored
in a database, while windowed data are definitely discarded, trend clusters represent the
data knowledge for the future off-line interpolation phase. For each trend cluster, a shape-
dependent sample of clustered sensors (key sensors) is extracted. The sampling algorithm
is designed to keep only the information which is useful to sketch the real spatial extent
of the clustered region. At the same time, a (polynomial) regression model of the time
law underlying the trend time series is determined and only regression coefficients are
stored in the database as a model of the trend. The off-line phase (see Figure 2(b)), which
is repeatable, retrieves the spatiotemporal knowledge surrounding the space-time point to
be interpolated from the database. This knowledge is used to determine an IDW based
estimate of the field. Details of the trend cluster discovery, the shape-based sampling, the
time-series (polynomial) regression and the spatiotemporal IDW interpolation are reported
in the following subsections.

4.1 Trend cluster discovery

The trend cluster discovery is performed by the algorithm SUMATRA whose implementa-
tion is now integrated as a component of the TRECI on-line framework. SUMATRA, origi-
nally presented in [4], is a sensor data stream mining algorithm able to process in real-time
a window of data snapshots and to discover trend clusters as accurate and compact sum-
marization patterns of windowed data. In its initial formulation SUMATRA stemmed from
the non-realistic assumption that the number of sensors in the network does not change,
while it is a matter of fact that sensors may be (temporally) switched off by causing miss-
ing values at some time points. On the other hand, it is also plausible that new sensors are
switched on in the network, while old sensors are definitely switched off at the time of a
long streaming activity. Unlike [4], TRECI accounts for the changeable topology of the sen-
sor network and enhances the trend cluster discovery algorithm to estimate missing data
on-the-fly and self-adapt to changes in the network topology. Consequently, the spatial
closeness relation, according to which the sensors are virtually linked in the network struc-
ture, is now defined to self-adapt to the spatial density of those sensors actually operative
at any time.

The core issues of the algorithm, including the spatial closeness relation between sen-
sors; the trend similarity between sensors; the intra-cluster trend variability; and details of
the trend cluster discovery algorithm itself are illustrated in the following subsections.

4.1.1 Core issues

As suggested in [31] the geographic distance between sensors can be used to determine if
a sensors are spatially close or not.

Definition 4.1 (Spatial closeness relation). Let d be a distance threshold. Sensor A is close to
sensor B, if A is at worst d far from B.

It is reasonable to suppose that the threshold d is a function of the sensors spatial den-
sity. The value of the threshold d is automatically determined, at each window. For exam-
ple, it is possibly to use the 90◦ percentile of the box plot of distances between the nearest
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sensors (neighboring distances) that are operative in the window:

di = box
90%,p∈Ki

distancemin(p), (5)

where:

1. i indicates the i-th w-sized window W
t(i−1)w+1→tiw

in the sensor stream z(K,T );

2. Ki is the set of sensors which measure at least once the field in W
t(i−1)w+1→tiw

, that is,

Ki =
⋃

j=1,...,w

K(i−1)w+j ; and

3. distancemin(p) is the distance between p and its nearest neighbor in Ki, that is,
distancemin(p) = min

q∈Ki,p�=q
distance(p, q).

Note that the 90◦ percentile of the box plot of the neighboring distance is used in place
of the maximum to avoid the selection of outlier values in the set of the considered neigh-
boring distances.

The definition of the spatial closeness relation is used to characterize the spatial connec-
tivity, according to which a pair of sensors can be grouped in a spatial cluster of sensors.

Definition 4.2 (Intra-cluster spatial-connectivity). Let c be a set of sensors and p and q be two
sensors in c. Then p is spatially-connected to q across c iff:

1. p is spatially close to q (according to Definition 4.1), or
2. r ∈ c exists such that p is spatially close to r and r is spatially connected to q across c.

Then a spatially-aware cluster of sensors is defined.

Definition 4.3 (Spatially-aware cluster). Let c be a set of sensors; c represents a spatially-aware
cluster iff for each p, q ∈ c then p is spatially connected to q across c.

By considering the time dimension of data, a measure of the trend similarity between
sensors is defined.

Definition 4.4 (Trend similarity measure). Let p and q be two sensors which routinely sample
data of the field Z . The trend similarity between the series of data of Z sensed from p and q along
the time horizon t(i−1)w+1 → t(i)w is computed as:

tsim(p, q, Z, t(i−1)w+1 → tiw) = max
j=1,...,w

|z(i−1)w+j(p)− z(i−1)w+j(q)|. (6)

To compute the trend similarity measure between operative sensors whose data may
be missing at a certain time, the median of the observed neighbor values in the snapshot is
used. A missing data item is expected in the case of a sensor which is switched on in the
window, but whose measured data item is not available at some time point of the window.

Definition 4.5 (Intra-cluster trend variability ). Let c be a spatially-aware cluster of sensors.
Let ẑ be the trend prototype of c with time horizon t(i−1)w+1 → tiw (ẑ is computed according
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to Definition 1 like the time series of medians of field data sensed from c at each time point of
t(i−1)w+1 → tiw). The intra-cluster trend variability of c along t(i−1)w+1 → tiw is:

trendV ariablility(c, Z, t(i−1)w+1→ tiw) = max
j=1,...,w

clusterV ariability(c, Z, t(i−1)w+j), (7)

where:
clusterV ariability(c, Z, t) = max

p∈c
|zt(p)− ẑ(t)|, (8)

with zt(p) as the field value measured at the location of p and at the time t and ẑ(t) the trend
prototype value timestamped at t in ẑ.

By considering a user-defined domain similarity threshold δ, the trend cluster discov-
ery algorithm detects a spatially-aware cluster of sensors having the intra-cluster trend
variability upper-bounded from δ.

4.1.2 Algorithm

The top-level description of the trend cluster discovery is reported Algorithm 1. The dis-
covery process is triggered once the new window W

t(i−1)w+1→tiw
(Figure 3(a)) is completely

streamed (Figure 3(b)) in z(T,K) .
The computation starts by assigning k = 1, where k enumerates the computed trend

clusters. An unclustered sensor p is randomly chosen as the seed of a new empty cluster ck.
Then, p is added to ck (green cluster in Figure 4(a)) and the trend prototype ẑk is constructed
(by calling trendPrototype(·)). Both ck and ẑk are expanded by using p as the seed of the
expansion process (by calling expandCluster(·, ·, ·)). The expanded trend cluster [i, ck, ẑk] is
added to the pattern set TC

t(i−1)w+1→tiw
. k is incremented by one and the clustering process

is iteratively repeated until all the sensors are assigned to a cluster (Figure 4(e) and Figure
4(f)).

The expansion process is described in Algorithm 2. The expansion of [ck, ẑk] is driven
by a seed node p and is recursively defined. First, the neighborhood η(p) is constructed (by
calling neighborhood(·, ·)) by considering the unclustered sensors which are spatially close
to p (see Definition 4.1) and measure values of the field which are trend-similar to those
measured by p (see Definition 4.4). Then the candidate cluster tempC = ck ∪ η(p) and
the associated trend prototype ˆtempZ are computed. The intra cluster trend variability of
[tempC, ˆtempZ, ] is computed (by calling trendClusterVariability(·, ·, ·)). Two cases are distin-
guished:

1. If trendClusterV ariability(tempC, ˆtempZ, t(i−1)w+1 → tiw) ≤ δ, then sensors of η(p)
are clustered into ck (green cluster in Figure 4(b) and the last computed ˆtempZ is
assigned to ẑk.

2. Otherwise the addition of each sensor of η(p) to ck is evaluated sensor-by-sensor.

In both cases, sensors newly clustered in ck are iteratively chosen as seeds to continue the
expansion process (grey circle in Figure 4(c)). The expansion process stops when no new
sensor is added to the cluster (green cluster in Figure 4(d)).

The time complexity of trend cluster discovery is mostly governed by the number of
neighborhood() invocations. At worst, one neighborhood is computed for each sensor and
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(a) A window of snapshots is completed in the stream

(b) Window data storage

Figure 3: An example of a data window.
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(a) Cluster seed selection (b) Strong Neighborhood

(c) Expansion seed (d) Complete cluster

(e) Clusters (f) Trend Prototypes

Figure 4: An example of trend cluster discovery by processing the data window shown in
Figure 3.
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evaluated in space and time. By using an indexing structure to execute such a neighbor-
hood query and a quickselect algorithm (having linear time complexity) to compute the
median aggregate, the time complexity of the trend cluster discovery in a window of k
sensors and w snapshots is, at worst,

O(k( wlogk︸ ︷︷ ︸
neighbourhood()

+ kw︸︷︷︸
trendPrototype()

+ kw︸︷︷︸
trendClusterV ariability()

)).

4.2 Cluster shape-based sensor sampling

Let c be a cluster of sensors. The goal is to find a shape-based sample s of the key sensors
grouped in c, such that s is stored in the database in place of s and is representative of the
region covered from c for the purpose of interpolation. Random sampling is the simplest
way to address this task, but it poses two issues. How can we choose the number of sensors
to be sampled? How can we guarantee that the randomly selected sensors maintain the
information on the cluster (region) shape? To answer both questions a sampling algorithm
which resorts to a quadtree decomposition of the clustered region is presented. The quadtree
decomposition is an adaptive sampling method largely used in image processing [21, 48].
The method is tailored to identify the key sensors of the cluster that are centroids in the
densely populated subareas of the cluster itself. Thus, the number of sampled sensors and
their location in space depend on how the cluster shape is spread across the space.

The sampling of a cluster is recursively performed according to Algorithm 3. First the
minimum boundary rectangleQ of the cluster c is computed (Algorithm 3, line 2, see Figure
5(a) and Figure 5(d)). The minimum bounding rectangle, also known as minimum bound-
ing box, is the rectangle enveloping c that is unambiguously identified by its left inferior
vertex (min(x), min(y)) and right superior vertex (max(x), max(y)) with:

min(x) = min
x

{x|(x, y) ∈ c} min(y) = min
y

{y|(x, y) ∈ c}
max(x) = max

x
{x|(x, y) ∈ c} max(y) = max

y
{y|(x, y) ∈ c} (9)

Algorithm 1 TrendClusterDiscovery( W
t(i−1)w+1→tiw

, δ) �→ TC
t(i−1)w+1→tiw

, δ)

Require: W
t(i−1)w+1→tiw

: the i-th data window in z(T,K);

Require: δ: the domain similarity threshold
Ensure: TC

t(i−1)w+1→tiw
: the set of trend clusters [i, ck, ẑk] discovered in W

t(i−1)w+1→tiw

1: k← 1
2: for all p ∈ Ki do
3: if p is UNCLUSTERED then
4: [ck, ẑk]← expandCluster({p},trendPrototype({p}), p)
5: append( TC

t(i−1)w+1→tiw
, [t(i−1)w+1 → tiw , ck, ẑk])

6: k ← k + 1
7: end if
8: end for
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(a) MBR density(c, Q) = 65.5% (b) QuadtTree decomposition

(c) sensor centroid selection (d) recursive QuadTree decomposition of
MBR rectangle

(e) recursive centroid selection (f) sampled sensors

Figure 5: An example of quadtree-based sensor sampling computed on the cluster of
squares with θ = 75%.
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Algorithm 2 expandCluster (ck, ẑk, p) �→ [ck, ẑk]

Require: ck: the current spatial cluster;
Require: ẑk: the trend prototype of ck;
Require: p: the seed sensor for the expansion
Ensure: [ck, ẑk]: the expanded trend cluster

1: η(p)← neighborhood(u)
2: [tempC, ˆtempZ]← [ck ∪ η(p), trendPrototype(ck ∪ η(p))]
3: if trendClusterVariability(tempC, ˆtempZ, t(i−1)w+1 → tiw) ≤ δ then
4: [ck, ẑk]← [tempC, ˆtempZ]
5: for all q ∈ η(p) do
6: [ck, Ẑk]← expandCluster(ck, ẑk, q)
7: end for
8: else
9: for all q ∈ η(p) do

10: [tempC, ˆtempZ]← [ck ∪ q, trendPrototype(ck ∪ q)]
11: if trendClusterVariability(tempC, ˆtempZ, t(i−1)w+1 → tiw) ≤ δ then
12: [ck, ẑk]← expandCluster(tempC, ˆtempZ, q)
13: end if
14: end for
15: end if

Algorithm 3 function sampling(c, θ) return keysC

Require: c {cluster of sensors}
Require: θ {density threshold}
Ensure: keysC {sample of key sensors extracted from c}

1: keysC ⇐ �
2: Q⇐mbr(c)
3: if cardinality(XY,Q) 
= 0% then
4: if density(c,Q)> θ% then
5: keysC ⇐ s ∪ {centroid(c)}
6: else
7: Set < c >⇐subClusterQuadtree(c)
8: for all Ci ∈ Set < c > do
9: keysC ⇐ keysC ∪ sampling(Ci)

10: end for
11: end if
12: end if

Then the density of the cluster c inside Q (Algorithm 3, lines 3–4, Figure 5(a)) is com-
puted according to a density measure defined as follows:

density(c,Q) =
�(c ∩Q)

�Q
× 100, (10)

where �(c ∩ Q) denotes the number of sensors clustered in c which are spatially contained
in Q and �Q is the number of sensors of the network falling in Q. The spatial relation
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of containment between a 2D location (x, y) and a rectangle [(xi, yi), (xs, ys)] is defined as
follows:

(x, y) ⊆ Q ⇔ xi ≤ x ≤ xs ∧ yi ≤ y ≤ ys. (11)

If density(c,Q) is equal to zero, then Q is empty and it can be discarded for the sam-
pling (see the gray colored quadrant in Figure 5(c)). If density(c,Q) is greater than θ% (by
default θ = 75%), then C ∩ Q can be considered a dense sub-area of C and its centroid
node is sampled (Algorithm 3, lines 4–5, see red-colored sensors in Figure 5(c) and Figure
5(e)). Otherwise Q is decomposed into four sub quadrants (see Figure 5(d)), that is, Q1,
Q2, Q3 and Q4, and then c is coherently decomposed in the four subclusters falling in those
quadrants, that is C1 = c∩Q1, C2 = c∩Q2, C3 = c∩Q3 and C4 = c∩Q4 (see Figure 5(b) and
Figure 5(d)). The sampling is then recursively applied to each subcluster Ci (Algorithm 3,
lines 8–10).

The quadrant decomposition of Q is defined orthogonally to the axes according to x =
max(x)+min(x)

2 and y = max(y)+min(y)
2 , such that:

Q1 : [
(
min(x), max(y)+min(y)

2

)
,

(
max(x)+min(x)

2 ,max(y)
)

].

Q2 : [
(

max(x)+min(x)
2 , max(y)+min(y)

2

)
, (max(x),max(y)) ].

Q3 : [
(

max(x)+min(x)
2 ,min(y)

)
,

(
max(x), max(y)+min(y)

2

)
].

Q4 : [ (min(x),min(y)) ,
(

max(x)+min(x)
2 , max(y)+min(y)

2

)
].

(12)
The centroid of a set of sensors Cs is computed. First, the centroid location (Figure 5(c))

(x̂c, ŷc) of c is determined as follows:

x̂c =
1

�c

∑
(x,y)∈c

x, ŷc =
1

�c

∑
(x,y)∈c

y. (13)

Then the sensor of c which is the nearest neighbor to (x̂c, ŷc) is selected as the key sensor
(centroid sensor) for the sampling. The centroid of c (see Figure 5(c) and Figure 5(e)) is the
point location defined as follows:

centroid(c) = argmin
(x,y)∈c

{EuclideanDistance((x, y), (x̂c, ŷc))} . (14)

Once no further decomposition is possible the selected sample of sensors is output (Fig-
ure 5(f)). The consideration of the extracted sample of sensors, in place of each original
cluster, drastically reduces the number of sensors processed during the interpolation phase.
In this way, the algorithm speeds-up the off-line interpolation phase.

This recursive subdivision algorithm has a time complexity of O(n), where n is the size
of the cluster. It allows the selection of a variable number of centroids from c. Each centroid
is strategically located in a dense area of c, so that the necessary information to sketch the
cluster shape is preserved.
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Algorithm 4 function polynomial(T, Z,w) return poly

– Main routine(T, Z,w) return poly

Require: (T, Z,w) {the time series for the polynomial fitting}
Ensure: poly {coefficients of the polynomial fitting (T, Z,w)}

1: p⇐ forwardPolynomial(costantPolynomial(V ),T, Z,w, 1)
– forwardPolynomial(previusP, T, Z, w,D) return p

1: if D ≤ w − 1 then
2: poly ⇐ previousP
3: else
4: newP ⇐ straightLine(residual(TD), residual(Z))
5: if f-test(newP ) then
6: poly ⇐ previuousP {The forward addition of the variable TD to the polynomial is

not statistically significant for the fitting of the time series (T, Z,w) }
7: else
8: poly ⇐forwardPolynomial(newP, T, Z, w,D + 1)
9: end if

10: end if

4.3 Trend based interpolator

Let (T, Z,w) be a time series of length w (i.e., the prototype of a trend cluster), such that,
(T, Z,w) = 〈t1, z1〉, 〈t2, z2〉, . . . , 〈tw, zw〉. A temporal interpolator is determined to estimate
the value of Z within the cluster at each unsampled time point within the intervalw. TRECI
computes a polynomial interpolator which fits in the time evolution of the data in a trend
prototype time series. This interpolator is locally computed for each trend cluster.

The computation of a polynomial over locally related geographic data resembles the
concept of a local relationship formulated in [13]. In [13] the existence of a local relation-
ship is addressed by a competitive method based on the local entropy map. The local
entropy is applied to determine a polynomial of two or more variables which change over
the geographic space. Similarly to [13] the changes throughout the space of the data re-
lationship by means of parameters (expressed in this case by polynomial coefficients) are
considered. However, differently from [13], the zones where the changes occur do not need
to be discovered. They are identified by the trend clusters, so that polynomial coefficients
are piecewise learned within each cluster.

It is finally remarkable that any prior assumption on polynomial order is avoided by
resorting to a stepwise regression procedure or by a considering simple linear interpolator.
Details on both polynomial and linear interpolators are provided in the following.

4.3.1 Polynomial interpolator

The goal is to estimate the unknown coefficients of a polynomial poly(T ) : T �→ Z ,
defined as follows:

poly(T ) = α+ β1t+ β2t
2,+ . . .+ βDtD, (15)

such that D < w and poly(t) fits the time series (T, Z,w), according to the minimization of a
cost function. These coefficients will be stored in a database in place of the fitted time series.
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The degree D is automatically chosen (1 ≤ D < w) by the forward selection strategy [7],
tailored for the polynomial construction. This strategy is combined with a test to estimate
the ability of a polynomial to fit the time series. Once the (unknown) estimate at a generic
time position t∗ is required, the polynomial interpolator computes:

z(t∗) = poly(t∗). (16)

The polynomial is built stepwise according to Algorithm 4. We start with D = 1 and
compute the (straight-line) polynomial of Z in T (see line 1 of the main routine in Algorithm
4). At each iteration, the ability of the current D-degree polynomial (named newp) to fit the
time series (T, Z,w) is evaluated according to the partial F-test. The F-test [7], specifically
applied in this case, allows the evaluation of the statistical significance in the improvement
in the time series fitting, due to the addition of the term TD to the currently constructed
polynomial. If this improvement is not statistically significant, the polynomial previousP ,
that is, the polynomial previously constructed with degreeD−1 (the constant polynomial if
D = 1) is kept and no higher-degree variable is added to the final polynomial (stopping cri-
terion, as reported in line 6 of Algorithm 4). On the contrary, D is incremented by one and
the polynomial of degree D is forward computed by means of the straight-line regression
between the residual of the dependent variable Z and the residual of the D-degree variable
TD (see line 8 of Algorithm 4 for the recursive call of the function forwardPolynomial()
and line 4 of Algorithm 4 for the computation of a straight line between residuals).

The residual of a variable is computed as the difference between the variable and the
polynomial of degree D − 1 estimating that variable. In particular, the residual of the de-
pendent variable Z is the difference between the variable itself and the current polynomial
in T of degree D−1 and fitting (T, Z,w). Similarly, the residual of the independent variable
TD is the difference between the variable itself and the polynomial in T of degree D − 1
fitting TD.

The procedure is iterated until D = w − 1 (see line 1 in Algorithm 4) or the F-test (see
line 5 of Algorithm 4) are satisfied.

An example of the stepwise construction of a polynomial performed according to Algo-
rithm 4 is reported in Example 4.1.

Example 4.1. (Forward selection based construction of a polynomial). Let us consider the
case in which we intend to build the polynomial p of degree D = 2,

poly : Z = α+ βT + γT 2, (17)

through a sequence of parametric straight-line regressions. To this aim, we start by regressing V on
the 1-degree variable T and building the straight line:

Ẑ = α1 + β1T. (18)

The slope α1 and intercept β1 are computed on the time series (T, Z,w). This equation does
not fit the series exactly. By adding the 2-degree variable T 2, the fitting might improve. However,
instead of starting from scratch and building a new polynomial with both T and T 2, the forward
strategy is exploited in the polynomial construction. First the parametric linear polynomial is built
for T 2 if T is given, that is, T̂ 2 = α2 + β2T . Then the residuals are defined on both the independent
variable T 2 and the dependent variable Z , that is:
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T 2′ = T 2 − (α2 + β2T ).
Z ′ = Z − (α1 + β1T ).

(19)

Finally, the straight-line regression is determined between residuals Z ′ and T 2′ in the time
series, that is,

Ẑ ′ = α3 + β3T
2′. (20)

By substituting the straight-line regressions of Equation 19, the latter equation is reformulated
as follows:

Z − (α1 + β1T ) = α3 + β3(T
2 − (α2 + β2T )). (21)

This equation can be written equivalently as:

Z = (α3 + α1 − α2β3) + (β1 − β2β3)T + β3T
2.

It is proved that the polynomial reported in the last equation coincides with the polynomial model
built with Z , T and T 2 (in Equation 17), that is:

α = α3 + α1 − α2β3. (22)
β = β1 − β2β3. (23)
γ = β3. (24)

A final consideration concerns the time complexity of this forward selection based com-
putation of a polynomial of degree D, that is O(w× D(D−1)

2 ). This result can be interestingly
combined with the consideration reported in [8, p. 90], according to which the degree of a
polynomial adequately fitting w values should rarely exceed w

3 .

4.3.2 Linear interpolator

The polynomial interpolation is conceptually simple since it allows a further reduction of
the size of the time series stored in the database (at least if D ≤ w − 1). However, its
computation can be expensive for high polynomial degrees. The linear interpolation is a
simpler lazy interpolator which, in several cases, performs as well as the polynomial inter-
polator without requiring a learning phase. The time series (T, Z,w) is stored as a sequence
of timestamped values in the database (hence, there is no reduction of its size). Once the
(unknown) estimate at a generic time position t∗ is required, the linear interpolator deter-
mines:

z(t∗) = z(ti) · (1 − τ(ti, ti+1)) + z(ti+1) · τ(ti, ti+1), (25)

where ti and ti+1 are the timestamps of two consecutive time series values (in (T, Z,w)),
such that t∗ ∈ [ti, ti+1] and τ(ti, ti+1) =

t∗−ti
ti+1−ti

.
The linear interpolator is, in general, less precise than any other interpolator, apart

from the nearest neighbor interpolator, which takes as output just the nearest value in
the time series. Intuitively, it is less precise than any other polynomial interpolation (of
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degree greater than 1) since it approximates the ideal “continuous” function implied by the
time series with a sequence of segments. These segments have discontinuities in the first
derivative (improbable in any continuous physical quantity). The discontinuity problem
does not occur for the polynomial. More precisely, the difference between the interpolators
can be appreciated in the frequency domain by comparing their transfer functions [36]. In
practice, interpolation can be regarded as the passage of the discrete signal (T, V ) through
a linear time-invariant and time-continuous system (named filter) and successive sampling
at the desired time position t∗. The accuracy of an interpolator can be achieved by com-
paring its transfer function (i.e., the Fourier transform of its impulse response) with that
of the ideal interpolator. The transfer function of the ideal interpolator is a low-pass ideal
filter with a transfer function constant up to the Nyquist frequency and zero. Formally,
Hid(f) = rect(f/fs), rect() being the rectangle function, equal to 1 inside [−1/2, 1/2] and
zero otherwise and fs = 1/ΔT the sampling frequency. The transfer function of a linear
interpolator corresponds to a sinc2(f ·ΔT ) that has a low pass effect in the fundamental do-
main. This function does not completely remove the replicas, since its secondary maximum
is at −26dB. The transfer function of a polynomial interpolator varies with the degree of
the polynomial. For example, the transfer function of a third-order polynomial resembles
that of a spline interpolation, known to be very smooth in the fundamental domain and
with its secondary maximum at −44dB, [36].

4.4 Spatiotemporal inverse distance weighting interpolation

Inverse distance weighting (IDW) [43] is adapted here in order to estimate off-line the un-
known field measure at any space-time point (x∗, y∗, t∗). First, the past window W which
hosts t∗ is identified. Once W is identified, the key sensors of the summary (trend clusters)
which are stored in the database for the window W and the regression model (polynomial
coefficients or time series values) of the trend prototypes associated to each key sensor are
retrieved.

Let c be a key sensor with c ∈ keys(W ), (xc, yc) be the space position of c, zc(t∗) be
the value estimated for c at time point t∗ by using either the polynomial interpolator (see
Section 4.3.1) or the linear interpolator (see Section 4.3.2) of the trend prototype of c in W .
Then the interpolated value ẑ(x∗, y∗, t∗) is computed as follows:

ẑ(x∗, y∗, t∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

zc(t
∗) if ∃c ∈ keys(W )

with (x∗, y∗) ≡ (xc, yc),∑
c∈keys(W )

w(x∗,y∗)(xc,yc) × zc(t
∗)∑

c∈keys(W )

w(x∗,y∗)(xc,yc)

otherwise.
(26)

The idea behind Equation 26 is that the interpolation at an unsampled point location is
a function of the known values around it. In particular, it depends on them in a relation
inversely proportional to the distance, i.e., the nearer a known value is, the stronger its
influence. According to this idea, the weights w(x∗,y∗)(xc,yc) are defined by the inverse of a
power of the Euclidean distance:

w(x∗,y∗)(xc,yc) = d((x∗, y∗)(xc, yc))
−p. (27)
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The IDW interpolation is dependent on the power parameter p, which is a positive and
real number. Typically higher values of p provide more influence to the observation located
closest to the unsampled position. For p → ∞, IDW converges to the 1-nearest neighbor
interpolation, while for p→ 0 it becomes an arithmetic mean. Therefore, the optimal value
of this parameter is dependent on the features of the random field under study. Here p
has been chosen by following the rationale in [29,35] for which a geophysical random field
has well-known self-similarity properties. Among these the correlation function of a field
resembles a power-descending law of the distance d, that is, Rx(d) � |d|−α. By considering
p as the tuner of the relative influence of neighbors in interpolation p = α is chosen. On the
other hand, the value of α is known to be related to the fractal (or Hausdorff) dimension ν of
a field by a simple relation [35], that is, ν = n+1−α/2, where n is the field dimension. Since
in the literature [29] the fractal dimension of several geophysical fields has been estimated
between 2 and 3, by assuming ν = 2.5, α = p = 3 is achieved.

Although Equation 26 considers the entire set of key sensors sampled across the net-
worked space, it is reasonable to suppose that an influence boundary can be set so that the
key sensors which are outside this area should not be taken at all in the computation. Thus,
a spheric area is fixed around the unsampled location (x∗, y∗); the key sensors contribute to
the interpolation only if they are inside this spherical region. The center of the interpolation
sphere is (x∗, y∗) and the radius is a boundary parameter b. Based on these considerations
Equation 27 is reformulated as follows:

w(x∗,y∗),(xc,yc) =

{
d((x∗, y∗), (xc, yc))

−p if d((x∗, y∗), (xc, yc)) ≤ b

0 otherwise
. (28)

In TRECI, an automatic mechanism is implemented to choose b at each window. This
mechanism guarantees that, independently of (x∗, y∗), at least one centroid is within the
boundaries. The idea of automatically detecting bW at the window W as the maximum
among the distances computed between each pair of closest centroids in the set keys(W )
was inspired to this requirement. Formally, let c ∈ keys(W ) be a key sensor of a cluster
in W , minc[W ] be the minimum Euclidean distance between c and any other key sampled
sensor c′ ∈ centroids(W ), that is:

minc[W ] = min
c′∈centroids(W )∧c′ �=c

d(ĉCk
, ĉCkh). (29)

Then bW is computed as the maximum of the minc[W ] by varying c, that is:

bW = max
c∈centroids(W )

minc[W ]. (30)

5 Experimental results

The TRECI framework is written in Java and interfaces with a database managed by a
MySQL DBMS. The on-line component (summarizer) and the off-line component (space-
time interpolator) of TRECI were evaluated on an Intel(R) Core(TM) 2 DUO CPU P61100
@2.00GHz with 3.7 GB of RAM Memory, running Ubuntu Release 12.04 (precise) 32−bit,
Kernel Linux 3.2.0-26-generic-pae.

The goals of the experiments are twofold. The first goal is to demonstrate that TRECI-
ONLINE is able to give an accurate and compact summarized representation of a sensor
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network data stream. This result is achieved by the combination of the trend clusters with
the quadtree-based sampling of clusters and (polynomial) regression models of trend pro-
totypes. The second goal is to evaluate how TRECI-OFFLINE is effective in integrating the
trend cluster knowledge in the IDW interpolation and estimating the field value at every
space-time point.

5.1 Experimental setting: Data and measures

Experiments were performed with two sets of publicly available climatology network data.
Details on the real sensor network data streams and the evaluation measures considered
for the empirical evaluation in this study are reported below.

5.1.1 Data

The South American Air Temperature sensor data stream [45] (SAT) collected monthly-mean
air temperature measurements (in degrees Celsius) between 1960 and 1990 over a 0.5◦×0.5◦
of latitude/longitude regular grid of South America, for a total of 6477 stations. The topol-
ogy of this network does not change in time and no measures are missing in the stream. By
using a boxplot the recorded temperature values range between −7.6 and 32.9oC.

The Global Historical Climatology Network sensor data stream [34] (GHCN) collected
monthly-mean air temperature (in degrees Celsius) for 7280 land stations worldwide. The
period of record varies from station to station, with several thousand extending back to
1890 up to 1999. Stations are irregularly installed across the Earth; the network configu-
ration changes in time since new stations have been installed during the time of measure-
ments, while old stations have been discarded. So the stream has several missing values.
The average number of stations measuring the field per snapshot is 3646.16. By using a box
plot it was calculated that temperature values range between −20.75oC and 49.25oC.

5.1.2 Evaluation measures

The performance of TRECI was evaluated in terms of the amount of memory consumed to
store the trend cluster summarization of the stream and of the interpolation error. The
amount was measured in kB. The interpolation error was measured as the root mean
squared error of the interpolated stream values (which were used as the ground truth).
Additional statistics collected in this evaluation study included the number of trend clus-
ters, the number of sensors grouped per cluster, the number of sampled key sensors, the
degree of the polynomial regression model, as well as the average nearest neighbor dis-
tance. In particular, the average nearest neighbor distance was computed by averaging,
for each window and for each key sensor in the window, the distance between the selected
key sensor and its nearest neighbor key sensor. Hence, the average nearest neighbor dis-
tance computed on a window is an average indicator of the sensors’ density in the window.
Note that the measures are averaged per window, except for RMSE, which is averaged per
snapshot.

5.2 Results

The results of the empirical evaluation of both the summarizer and the interpolator inte-
grated in TRECI are now illustrated and discussed. Experiments were run by considering
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window size w = 12 (months) due to the expected yearlong periodicity of the temper-
ature field. Trend cluster discovery was run with a domain similarity threshold that is
about 10% of the field dynamics in the stream (δ = 4oC in SAT and δ = 7oC in GHCN).
In the evaluation of the on-line phase (summarizer) the goal was to determine how much
the quadtree-based sampling of clusters and the polynomial-based regression modeling of
trend prototypes improve the summarization compactness of the trend cluster storage in
the database. In the evaluation of the off-line phase (interpolator) the goal was to establish
how accurate IDW is compared to a simple (but common in the literature) interpolation
technique like the 1-nearest neighbor (1NN). The accuracy of the interpolator was also
evaluated by varying either the percentage of sensors switched off in the network or the
percentage of snapshots cut-off in the stream. In these cases the summarizer processed
only a sub-set of the stream, while the interpolator was used to estimate both available and
unavailable data.

5.2.1 TRECI-ONLINE (summarization) evaluation

Each stream was entirely (i.e., without dropping any data) processed on-line for this part of
the evaluation study. The summarization power of trend cluster discovery was evaluated
when combined with sampling and polynomial regression modeling.

Quadtree sampling The summarization power of combining trend cluster and sampling
was evaluated. For each trend cluster, the key sensors were sampled and stored in the
database as representative of the cluster, while, as in SUMATRA, the time series of w val-
ues were stored as representative of the trend. This summarizer, which combines SUMA-
TRA with the quadtree sampling, is called Qs-S. Qs-S is compared to SUMATRA (when
no sampling is applied), Ss-S (when for each cluster just the central sensor is stored in the
database) and Rs-S (when for a cluster a random choice of a sample of sensors is made for
the storage in the database). In order to make this comparison the random selection takes
the same number of samples selected for Qs-S.

The average number of trend clusters discovered per window (nc), the average number
of sensors sampled per window (nss), the average memory size of the trend cluster rep-
resentation of each windowed stream as it is stored in the database (size) and the average
RMSE of each streamed snapshot reconstructed from the trend cluster knowledge stored in
the database (RMSE) are reported in Table 5.2.1. The stream reconstruction is a special case
of the space-time interpolation, where each interpolation point (x, y, t) is the space-time
location of each sensor actually transmitting at the time t.

The results obtained for both the networks confirm that, as expected, the sampling sig-
nificantly reduces the size of the stream. Obviously, the observed reduction is more impres-
sive whenever a single centroid sensor is sampled for each cluster, but this size reduction
is at the expense of the accuracy (see Qs-S versus Ss-S). On the other hand, the quadtree
decomposition for the sampling is highly beneficial. First, the sample size is automatically
tuned. Second, the strategic selection of those sensors that keep the information on the
cluster shape guarantees an error that is close to the error performed when all the sensors
are stored in the database (see SUMATRA versus Qs-S). In conclusion, the results suggest
that the use of quadtree sampling obtains the best trade-off between the size and the error
of the summary. This theory is sustained by the results obtained with an ideal network
(like SAT), whose topology is regular and does not change in time and where no expected
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data are missing. At the same time, it is sustained by results with an irregular sparse grid
(like GHCN), where the topology changes in time and expected data are often missing.

Data Measure/window Stream SUMATRA Qs-S Ss-S Rs-S
SAT nc - 82.4 82.4 82.4 82.4
SAT nss - 6477 666 82.4 666
SAT size [kB] 316.26 16.677 5.328 4.188 5.328
SAT rmse [oC] - 1.23 1.74 4.30 3.94

GHCN nc - 1064.3 1064.3 1064.3 1064.3
GHCN nss - 3646.2 1895.6 1064.3 1895.6
GHCN size [kB] 178.03 59.093 55.674 54.050 55.674
GHCN rmse [oC] - 1.87 2.38 3.71 2.41

Table 1: Quadtree sampling evaluation: number of clusters (nc), number of (sampled) sen-
sors (nss), size (kB) and error (RMSE). nc, nss, and size are averaged per window, RMSE is
averaged per snapshot.

Polynomial regression model The summarization power of the quadtree sampling was
also evaluated in combination with the use of the polynomial regression model to represent
the trend prototypes.

Data Measure/window SUMATRA Qs-S TRECI
SAT poly deg - - 5.37
SAT size [kB] 16.677 5.328 3.686
SAT rmse [oC] 1.23 1.74 1.84
SAT time (on-line) [secs] 19.43 21.35 21.64
SAT time (off-line) [secs] 5.89 22.42 23.21

GHCN poly deg/window - - 3.99
GHCN size [kB] 59.093 55.674 28.086
GHCN rmse [oC] 1.87 2.38 3.02
GHCN time (on-line) [secs] 19.23 25.33 26.68
GHCN time (off-line) [secs] 6.22 23.16 23.52

Table 2: Polynomial evaluation: Degree of learned polynomials (deg), size (kB) and error
(RMSE) of the (summarized) stream. Degree and size are averaged per window. RMSE is
averaged per snapshot.

The results, collected in Table 5.2.1, show that the polynomials computed to model the
trend prototypes have an average degree which is definitely lower than w (w=12) and close
enough to the expected threshold of w/3 suggested in [8]. The storage of the (polynomial)
regression model of a trend prototype in place of the time series computed by the trend
cluster discovery process further reduces the size of the stream summary (see size of TRECI
versus Qs-S versus SUMATRA in Table 5.2.1) stored in the database. The behavior observed
is that the summarization capability is at the expense of the accuracy (see RMSE of TRECI
versus Qs-S in Table 5.2.1), but the RMSE is well below the upper bound of the domain
similarity threshold δ.
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Computation time To complete the analysis of the on-line phase of the framework pre-
sented, the time spent per window (in seconds) to learn the interpolation model was
analyzed. The computation time was collected for both SUMATRA, Qs-S (SUMATRA,
quadtree sampling and linear interpolator) and TRECI (SUMATRA, quadtree sampling
and polynomial interpolator) when they process the entire streams (no sensor has been
switched off). As expected, in both networks, the computation time slightly increased from
SUMATRA to Qs-S and then to TRECI. This phenomenon is due to the amount of additional
processing required to sample sensors in a cluster as well as to determine the polynomial
interpolator of a trend. In any case, the on-line computation time always remains below 27
seconds per window, where a window collects twelve snapshots for a very a large network
(more than six thousands sensors in each network). It is reasonable to conclude that the
proposed on-line processing, even if it is applied to monthly averaged climate data, scales
well for a faster real time data stream, for which snapshots of large sets of observations can
arrive within minutes or seconds.

Data Measure/window SUMATRA Qs-S TRECI
SAT time (on-line) [secs] 19.43 21.35 21.64

GHCN time (on-line) [secs] 19.23 25.33 26.68

Table 3: Computation time evaluation: Computation time spent per window (in secs) to
learn an interpolation model in the on-line phase

5.2.2 TRECI OFFLINE (interpolation) evaluation

The error of the spatiotemporal IDW interpolation was evaluated in experimental settings
obtained by switching off sensors and/or jumping snapshots in the summarization phase.
The IDW was also compared to the simple 1-NN, and the conditions under which the
polynomial interpolator outperforms the trend linear interpolator were investigated.

p SAT GHCN
1 2.28 4.17
2 1.92 4.01
3 1.84 3.99
4 1.58 3.77
5 1.54 3.89
6 1.52 3.98
7 1.5186 4.0
8 1.5181 4.09
9 1.5196 4.13

10 1.5217 4.16

Table 4: Interpolation error (RMSE) by varying p. The power parameter p ranges between
1 and 10. The error is averaged per snapshot.

IDW versus p The IDW interpolation is a function of the power parameter p and p = 3
has been considered as a reasonable choice in Section 4.4. The influence of this parameter
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on the interpolation error was analyzed on the entire networks, with p growing from 1 to
10. The results are collected in Table 5.2.2. For GHCN (a sparse and realistic network), the
RMSE curve initially decreases, with p reaching a minimum between 3 and 4 (coherently
with the above considerations). For SAT (a regular network), a minimum is reached at
p = 8, but it can be noted that the decreasing of RMSE from p = 3 to p = 7 is negligible. So
the choice of setting p = 3, according to the considerations in Section 4.4 , is not necessarily
the best. In any case, this choice achieves acceptable accuracy both in sparse and in regular
networks without any expensive trial and error approach.

Spatiotemporal IDW Several experimental settings were considered to analyze the accu-
racy of the spatiotemporal IDW interpolator. First, 50% of the sensors were switched off in
each snapshot. Second, 50% of snapshots were jumped in the streaming line. Finally, 50%
of the sensors were switched off and 50% of the snapshots are jumped at the same time.
The error performed in interpolating the stream as a whole was compared to the baseline
case where no sensor is switched off and no snapshot is jumped.

The results collected in Table 5.2.2 show that the interpolation error is below δ in SAT,
as well as in GHCN. In particular, the error reaches δ in GHCN just when both new spatial
and new temporal points are considered in the interpolation phase (i.e., both sensors are
switched off in the network and snapshots are jumped in the streaming line of the sum-
marization phase). This result confirms the effectiveness of the interpolation even when a
sparse network (like GHCN) is processed. Although the network becomes more sparse by
switching off sensors, the data are sufficient for an accurate interpolation. In conclusion,
TRECI can be considered a robust tool for interpolating a random field of a sparse and
incomplete network at any location across the space and at any time point in the past.

Stream Baseline Sensor Time point Sensor switching-off and
switching-off jumping time point jumping

SAT 1.84 2.70 2.63 3.27

GHCN 3.02 6.32 4.67 7.24

Table 5: Interpolation error (RMSE) computed on the stream in its entirety when 50% of
the sensors have been switched off in the network and/or 50% of the snapshots have been
jumped in the streaming line for the summarization phase. Measures are in oC.

IDW versus 1-NN How the accuracy of the spatiotemporal IDW compares with the accu-
racy of the simpler 1-NN was investigated. This comparison was performed by varying the
percentage of sensors which were switched off in the network from 0% (the network is con-
sidered in its entirety) to 20%, 40%, 60% and 80% and using the polynomial interpolator of
trend prototypes. Collected measures included the average number of switched-on sensors
per window (nONs), the average number of trend clusters per window (nc), the average
number of sampled key sensors per window (nss), the average nearest neighbor distance
between the sampled key sensors per window (nnd), the average number of sensors per
cluster (nsc), and the average RMSE per snapshot.

The results are collected in Table 5.2.2. The analysis of these results confirms that IDW
greatly improves 1-NN interpolation accuracy. As expected, by increasing the sparsity
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Stream % nONs nc nss nnd nsc rmse(idw) rmse(1nn)
SAT 0% 6477 82.4 666 0.8o 78.5 1.74 8.88
SAT 20% 5182 75.7 514.3 0.88o 68.4 2.40 8.79
SAT 40% 3886 72.2 417.8 1.01o 53.8 2.52 9.09
SAT 60% 2591 67.3 311.0 1.21o 38.4 2.74 8.06
SAT 80% 1295 62.3 144.1 1.73o 24.7 4.28 10.24

GHCN 0% 3646.16 1064.34 1895.57 1.84o 3.438 3.02 9.28
GHCN 20% 2880.72 928.26 1562.42 2.01o 3.10 4.80 10.94
GHCN 40% 2151.18 780.475 1213.93 2.25o 2.76 5.84 12.41
GHCN 60% 1427.72 587.17 826.16 2.69o 2.43 6.79 14.74
GHCN 80% 723.28 387.91 444.77 3.76o 1.86 7.68 16.49

Table 6: IDW versus NN interpolation performance: Percentage of sensors (%) which are
switched off per snapshot, average number of switched-on sensors per window (nONs),
average number of trend clusters per window (nc), average number of sampled key sensors
per window (nss), average nearest neighbor distance between the sampled key sensors
(nnd) per window, average number of sensors per cluster (nsc) and average RMSE per
snapshot computed on the whole stream.

of the network, the average number of discovered clusters (nc), decreases as well as the
number of sampled key sensors (nss) and the number of sensors per cluster (nsc). It is
noticeable that the average distance between each pair of nearest key sensors increases as
an effect of the higher sparsity of sensors across the network. The RMSE is monotonic with
the percentage of switched-off sensors. This is an expected result since, by reducing the
quality of the interpolation knowledge base (trend clusters in this case), the accuracy of the
interpolator decreases as well. In any case, the RMSE is always below the domain similarity
threshold δ, except in the extreme case that 80% of the sensors is switched off. This is an
acceptable result since, in that case, the network becomes too sparse and the amount of
available information for the interpolation becomes too poor.

IDW: Polynomial interpolator versus trend linear interpolator The final considerations
concerned the analysis of the spatiotemporal IDW when the polynomial interpolator is
compared to the linear interpolator. The interpolation error, computed on the entire stream,
was evaluated under a progressive downsampling of the snapshots in a window. So, an
initial one-stepped downsampling step (all snapshots in the window are used for the sum-
marization) was followed by a two-, three-, and four-stepped downsampling (in each win-
dow, 6, 4, and 3 snapshots were taken instead of the original twelve snapshots for the
summarization phase).

The results collected in Table 5.2.2 show that the storage size of trend clusters is reduced
when using the polynomial regression model. Consequently, we plan to use the polyno-
mial interpolator of trend instead of the linear interpolator. This consideration is especially
true for low values of the downsampling step. On the other hand, the use of a linear in-
terpolator within IDW outperforms the use of the polynomial interpolator, apart from the
experimental settings, where the downsampling step is 4 for the SAT network, 3 and 4 for
the GHCN network.
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Once again the polynomial regression model can be considered a good compromise
between the effectiveness in summarizing trend data and the accuracy in spatiotemporal
interpolation. In particular, its performance was significantly better in bad measurement
conditions, for example, when fewer snapshots of the stream are processed in the on-line
phase.

Stream ns dsf size(linear) rmse(linear) size(polynomial) rmse(polynomial)
SAT 0 1 5.32 1.74 3.68 1.84
SAT 6 2 1.48 2.16 1.29 2.63
SAT 8 3 0.78 2.74 0.75 3.5
SAT 9 4 0.48 3.5 0.46 2.6

GHCN 0 1 43.15 2.37 28.08 3.02
GHCN 6 2 11.32 4.74 8.31 5.18
GHCN 8 3 5.59 6.96 5.12 5.71
GHCN 9 4 3.38 10.39 3.17 6.24

Table 7: IDW performances, trend linear interpolator versus trend polynomial interpolator:
The number of jumped snapshots per window (ns), the downsampling factor (dsf), the
average trend cluster summary size per window (kB), the average RMSE per snapshot.

6 Conclusion

Trend clusters are stream patterns which compactly represent numeric spatiotemporal data
by means of spatial clusters having prominent data trends in time. They were originally
defined to summarize data measures of a geophysical numeric field which were collected
throughout a remote sensor network. In this paper, the trend cluster discovery is integrated
as an online step in the spatiotemporal interpolation process which permits the estimation
of a field at any location of the networked space and at any time point in the past.

A shape-dependent sampling technique is used to smartly reduce the number of sensors
which are needed to accurately describe the extent of each cluster. Moreover, a polynomial
regression model is fitted on each trend time series, in order to establish the law according
to which the intra-cluster measures presumably evolve in time. For each trend cluster the
sensors sampled in the cluster area and the polynomial law connected to them are stored
in a database as a knowledge base for any future (spatiotemporal) interpolation.

The inverse distance weighting principle is combined with the polynomial interpolator
of trend prototype to obtain spatial and temporal estimated values of the field.

The interpolator has been extensively evaluated in two large real climate sensor net-
works. The results prove the efficacy of the proposed solution that, in spite of a notable
reduction in the volume of sensed data, guarantees the accurate estimation of unknown
data. The efficacy of the interpolation method is also proved when the density of the sen-
sors in the network or the frequency of the field measures are reduced.
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