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Abstract: Numerically interpolated contour lines (NICL) developed from a high-resolution,
accurate digital elevation model (DEM) can be considered the most accurate contour base-
line available from surveyed data. Displays of this baseline, however, can exhibit an un-
desirable angularity and clutter that impedes human understanding of the data and defies
the universal appeal of a smooth curve. To achieve smooth, readable lines, the prevailing
wisdom today is to either 1) smooth the underlying surface model before creating the lines
or 2) use mathematical methods adapted from computer-aided design (CAD) to smooth
the lines in x and y. However, these smoothing methods can result in an inaccurate ren-
dition of the original data that undermines their subsequent use in analysis and modeling
applications. Upon close inspection, lines generated from such methods can depart from
the baseline by more than a definable and acceptable distance in x and y, particularly no-
ticeable in important areas of slope change. Here, we argue that generalized contours have
a geometric accuracy requirement that must be observed. We present a novel alternative to
the prevailing methods that 1) presents an incremental smoothing method that is a logical
complement to Douglas-Poiker thinning; 2) introduces the use of slope as a means of con-
trolling the degree of smoothing locally; 3) produces novel, operational definitions of tests
for smoothness and accuracy as well as for line symmetry; and 4) introduces the notion of
a topological TIN as a new type of terrain model and a medium for edits of contours. The
method only manipulates the baseline contours in x and y. By using only simple propor-
tions of sides and self-similar geometry to smooth the original lines, we at the same time
impose computable, dynamic constraints on the smoothing. This combination ensures the
accuracy and acceptability of the final contours at scales appropriate for working GIS dis-
plays. The result is a Locally Adjusted Curve Approximation (LACA) technique for contour
line smoothing.

Keywords: terrain modeling, terrain model error, smoothing contour lines, smoothing con-
tour line error, geomorphometry, incremental self-similar line smoothing algorithm, medial
axis computation, measures of contour line smoothness and symmetry
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1 Introduction

It seems necessary to begin this paper by reaffirming the importance of contour displays
to terrain modeling and GIS. Next, we address what increasingly accurate and higher-
resolution terrain data means for contour displays. Particularly, we need to discuss the
impacts advances in geomorphometry are having on applications of terrain data as an ar-
gument supporting greater detail and accuracy in our surface representation and in contour
displays.

1.1 The importance of contour displays to terrain modelling and GIS

Numerically Interpolated Contour Lines (NICL) that have been generated by precisely in-
terpolating a series of straight-line segments through a dense and accurate Digital Ele-
vation Model (DEM) provide an undeniably accurate contour baseline [10, 35]. Yet such
lines are often aesthetically displeasing, erratic in appearance, and hence difficult to read
[3, 9, 12]. The process of developing an accurate yet readable contour line representation
from high-resolution elevation data is an ongoing area of research in map generaliza-
tion [3, 7, 9, 27, 33, 36, 37, 52, 60–62]. This research seeks to establish a method of smoothing
and enhancement of NICL data that preserves the accuracy and important surface details
while ensuring the smoothness and readability of contour displays.

One important impact of the research reported here is that it re-affirms the utility of
contour line displays as a vibrant data structure for understanding the surface [4, 18]. The
many alternative forms of surface display available in GIS today do not diminish the role of
contours as a viable working data structure. This is because the totality of the lines shown
in their true relation to one another precisely depict landforms. The shapes of the contours
delineate important real-world features of study in the landscape.

To illustrate the importance of these shapes, consider the power of contour displays
versus similar displays of either DEMs or Triangulated Irregular Networks (TINs). Viewed
from a top-down perspective, neither DEMs nor TINs, the dominant forms of terrain rep-
resentation in GIS, offer what 2.5D contours can. That is, the display of a matrix of numeric
height values representing posts in a DEM is virtually meaningless to a map reader. Like-
wise, the “spider web” network of a TIN display does little to reveal the structure of the
surface. Conversely, contours are readily interpretable by a map reader who can translate
the pattern of lines into surface shapes.

To meet their potential, contours must be legible and true to their original shape. The
resolution and accuracy of today’s LiDAR-derived DEMs underscore this need. As we shall
see in section 1.5, the precision and accuracy of this data are well on their way to driving
changes in Earth science models and our understanding of the world. Contour displays
are impacted by this shift in thought and we argue that the accuracy of the smoothed line
plays a more important role today than it has in the past.

1.2 Generalization of contours in the context of GIS displays, accurate
modern surveys, and emerging trends in geomorphometry

As illustrated by a 1:50,000 scale test conducted for this research (see section 2.3), we believe
the method presented here can successfully serve as a front-end to a map production sys-
tem geared toward topographic map series at large to medium scales. However, it is more
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likely to find use in formulating interactive GIS displays of the terrain at larger working
scales (i.e., at scales greater than 1:15,000). Even at these scales, the NICL displays require
generalization to be most useful as displays for analytic GIS work.

The impact of airborne laser measurements of the terrain is that accuracy and precision
have both been elevated to the sublime. Today’s terrain models are being captured with
single-digit centimeter vertical accuracy [14, 50] and at quarter to half-meter DEM post
spacing [26, 47]. At these resolutions, important micro-topographic features are emerging
from DEMs. In the past, stream channels from printed topographic maps were used by
geomorphologists for analysis. This surface representation gave way to gullies detected by
inference from contours on the printed map and verification through costly fieldwork [23].
In turn, this has now given way to multi-temporal detection of rills in the landscape visible
in LiDAR imagery [31, 47].

The emergence of micro-features in available terrain data has spurred recent develop-
ments in the field of geomorphometry as discussed in the examples given in section 1.5
below. We contend the upshot is that details that had been assumed to be irrelevant noise
that could be smoothed away using cartographic license must now be re-evaluated and, as
a consequence, more details kept in the smoothed lines.

The approach here is to work the problem of contour legibility in the x and y domain,
a marked contrast to widespread methods today which all too quickly resort to smoothing
the surface before generating the lines. Surface smoothing approaches, even when coupled
with attempts at feature-preserving filter methods, can still degrade important line shapes
such as turnbacks and ridgelines to achieve aesthetically pleasing results [29]. The pre-
ferred approach presented here offers a proof-of-concept method for calculable thinning
and then an algorithm for enhancement of the NICL line by re-constituting sections of it in
x and y. The approach balances concern for smoothness with the need for accuracy of line
placement and the fidelity of the display to real-world landforms viewable in a GIS context
at larger, working scales.

The issue then becomes one of an appropriate degree of generalization of the lines.

1.3 The why, when, and how of contour generalization

Weibel and Dutton [62], in augmenting a list of generalization operators developed by
McMaster and Shea [38], describe a framework for generalization in the digital realm that
discusses the “why”, “when”, and “how” of digital cartographic generalization. It is in-
structive to apply their questions to our work on contour displays.

First, why we generalize is easily answered. Despite advances in resolution (or perhaps
because of it given the truly discontinuous nature of important parts of the Earth’s surface),
the surveyed surface is typically described as “rough” and “noisy”. Yet the numerically
interpolated contours are undoubtedly correct: their method of development accurately
reflects the measured surface.

In Figure 1, a generalized version of the NICL lines using thinning and LACA smooth-
ing (shown as black lines at a 1-meter interval) is superimposed over the original display
using the method developed (thin red line with vertices). Two basic changes have oc-
curred. First, many small closed contours have been previously eliminated. At the display
scale of 1:6,000, these small areas were visually insignificant. Next, the one-meter interval
numerically interpolated lines have been thinned and then smoothed using our procedures
described fully in Section 3. The smoothed lines are demonstrably easier to interpret, al-

JOSIS, Number 28 (2024), pp. 3–73



6 MILLER

lowing a map reader to concentrate on the relation among contours and not be distracted by
angular movements occurring along the individual lines.

Figure 1: Why We Generalize: Noisy NICL Lines and Smoothed LACA Results for 1-Meter
Interval. The irregular red lines and vertices are NICL contours at a one-meter interval
(shown to reveal the true nature of the terrain) compared to the black LACA-6K smoothed
lines at a one-meter interval.

Second, the when of generalization somewhat limits the use of the method described
here to larger scales, at which the original vertical error statement of the data still ap-
plies [60]. We provide a formula in section 2.4.2.1 for using output scale to drive the
line thinning and thus the smoothing that follows. However, when the scale of display
is reduced to the point that self-intersections (coalescence of adjacent lines or self-coalescence)
become the norm, we must re-calibrate our thinking. While we do offer the solution given
here as a front end to medium-scale topographic map construction (see Sections 2.3 and
4.2), perhaps at this stage we have reached a time to consider the last alternative. That is, to
smooth the underlying surface and, to be scrupulous, necessarily update our vertical accuracy
statement to reflect the lowered confidence in the accuracy of our results. Refer to the test re-
sults in Section 4.4 where a revised vertical accuracy statement appropriate for generalized
contours is illustrated. Perhaps at this stage, we need to employ a fuller range of gener-
alization techniques as described by Weibel and Dutton [62] and McMaster and Shea [38]
and to engage in what Weibel describes as true “cartographic generalization” [60].

Third, as to the how of generalization, we employ a limited range of operators: we elim-
inate visually insignificant closed lines; we simplify by thinning vertices from the remaining
lines by a computable method; and we minimally displace and enhance the lines by a novel
smoothing technique that we claim is a logical complement to the Douglas-Peucker thinning
method.

The process of “cartographic generalization” is driven by significant scale changes and
necessarily employs intentional reduction in the accuracy of map data. This leads to the pre-
cise point of the dichotomy we face as terrain models today are characterized by extremely

www.josis.org

http://www.josis.org


LOCALLY ADJUSTED CURVE APPROXIMATION SMOOTHING OF CONTOUR POLYLINES 7

high resolution and accuracy. The accuracy meets the need for greater resolution in sup-
port of analysis and modeling efforts as described by two important examples given below
in section 1.5. The accurate details of today’s data were gained at a considerable price in
terms of the mobilization of the new methods of laser data capture and also the attendant
problems of data volume that come with increased resolution. Therefore, the details in the
data are not to be given up lightly as we try to balance the accuracy and smoothness of
contour line displays.

1.4 A problem statement

A clear problem statement for this research is best framed by the USA National Geospatial-
Intelligence Agency (NGA) mapping specification [44].

Generalization of contours is necessary since their exact representation would re-
sult in irregular and jagged patterns which would hamper readability. In such in-
stances, the contours are symmetrically smoothed, but not to the extent that 1)
the displacement exceeds the geometric accuracy requirement for the map or 2) misrep-
resents the physical characteristics of the terrain ( [44, p.92]—italics and numbered
notations are ours).

By generalization, we limit ourselves to the aforementioned methods of elimination, thin-
ning, displacement, and enhancement of the line. The details present in the data result in the
irregular and jagged patterns of the numerically interpolated contours that hamper readability.
The reference to symmetrical smoothing is an instruction that the smoothed line should be
balanced, perhaps an indirect reference to CAD-based mathematical smoothing techniques
in x and y that in the past have appeared overly smoothed and have oscillated wildly to
one side or the other of the original line. As we shall see in Sections 3 and 4, we have taken
pains to ensure the symmetry of the smoothing by working along a medial axis in intervals
of the line.

At its core, the proposed method is driven by the realization that generalized contours
have a geometric accuracy requirement. More exactly, it is argued in Section 2.4 that this
accuracy requirement can be tested in x and y and used to both control and assess the
degree of generalization.

Finally, in our problem statement, the admonition to not misrepresent the physical char-
acteristics of the terrain is an instruction to maintain the shapes of features that are evident
in contour displays of the surface. This stricture particularly applies to the drain and ridge
features that are vulnerable to methods of surface smoothing.

All too often, turnbacks associated with hydrographic features and ridgelines are sub-
ject to oversimplification or elimination when surface smoothing is applied [9, 29, 34]. Al-
ternatively, mathematical functions of smoothing in x and y often produce unnaturally
smooth results or require additional control points to condition the line in order to avoid
such problems [6, 7].

Both methods are driven by parameters that have a global effect. As Kettunen some-
what gloomily concludes, “parameter settings for universal surface smoothing that fix
problems in one area of the surface often produce new errors in other areas and the net
result is the same” [29]. The parameters for mathematical smoothing in x and y often re-
quire fine-tuning that is difficult to balance from one area to another over the entire area.
They often require augmentation points to be added to control the smoothing of the line
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and employ numerous iterations to achieve overly-smoothed results in a line [6, see Figures
5 and 6].

1.5 Effects of developments in geomorphometry on contour displays

The availability of high-resolution data and the field of study geomorphometry (the science
of quantitative land-surface analysis) are driving a paradigm shift in Earth science [46, 49].
To support this shift, contour displays need to be able to retain the meaningful details of
the surface [31, 49]. The prior emphasis in digital cartography, on smooth surfaces for the
production of published, general-purpose topographic maps, should now be extended. It
needs to also include an intermediate need for the special purpose, interactive analytic
displays of contours in a GIS context using something akin to what Weibel and Burghardt
describe as “on-the-fly generalization” [61].

1.5.1 The need to retain important surface breaks and discontinuities

The drive to show greater details in our surface displays is in large part an acknowledg-
ment that the Earth’s surface is not continuous as we have long assumed. That it is instead
punctuated with slope breaks and discontinuities. As Minár and Evans [41] note in their
article on the theoretical axioms of land surface segmentation, the many exceptions to con-
tinuity of the surface (i.e., discontinuities) need to be retained in the surface model and hence
reflected in contour displays. To digress slightly, in fact, we could extend this argument to
say that the DEM should be considered sacrosanct and manipulated only for terrain anal-
ysis and modeling; that generalization should only be applied to displays in x and y at a
target scale as we argue here. Extending this digression, perhaps dangerously further, we
could argue that today’s high-resolution DEMs contain little or no actual noise, but rather
are an accurate rendition of actual irregularities in the surface. At increasingly larger scales
for analysis, these irregularities become micro-topographic features that are important to
improved analysis, simulation, and modeling [51]. Contours displayed from such a model
should honor these discontinuities and not suppress or misrepresent them.

1.5.2 Examples of a paradigm shift: Modelling non-contributing areas in hydrologic
models and multi-temporal rills in models of soils erosion

Improved precision, resolution, and accuracy of elevation data are forcing a re-evaluation
of many Earth science computational models [21, 45, 47, 50, 63]. For example, in hydrologic
modeling applications, “pit removal” (i.e., filling in depression areas) is now considered a
standard prerequisite technique in virtually all DEM-based watershed delineation models
[64]. Perhaps that practice can now be called into question.

DEM filling was designed to alleviate the ambiguity of flow in flat and depressed areas
and it accommodates both simple “8D” (8-directional) watershed delineation methods as
well as multi-directional flow-routing models [27, 28]. Pit removal has always been subject
to criticism for its failure to recognize and accommodate “non-contributing areas” [39].
These are areas where the surface legitimately drains to an internal local minimum in the
watershed (referred to as “puddles”) forming a temporary area of standing water instead
of immediately flowing downhill [4,64]. In addition to puddles, any new method must also
recognize associated “pour points” or “breach points” in the terrain (i.e., local low points
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along the perimeter of depressed areas) where water can ultimately escape the impounded
area and continue to flow downhill [39, 64].

The implications of this looming advance for geomorphometry and hydrologic mod-
eling are large. True fully-distributed hydrologic models of overland flow can now be
contemplated and dynamically-timed flows from temporary storage in puddles can now
be considered in the modeling [47, 64]. This will undoubtedly be an improvement over
existing models in terms of the quantity and timing of water released into the connected
flowlines in the landscape.

In studies of soil erosion and sediment transport, similar changes in thought are being
driven by newly revealed surface details. Details as small as minute turnbacks in contours
may be significant in detecting features as small as rills in an application where soil erosion
is the point of modeling [31, 64]. Lazzari, in describing the prospects of multi-temporal,
high-resolution terrain data, reaches an obvious but challenging conclusion: “Geomorphol-
ogy [must] develop [a] new geomorphic transport law” [31]. As Dietrich et al. conclude
“[w]ith new tools available to obtain high-resolution topographic data and determine rates
of processes, the opportunity is now upon us to quantify the processes that are responsible
for shaping the earth’s surface” [11].

With regard to contour smoothing, all this is not to say that NICL lines require no
modifications nor that general-purpose topographic maps have become obsolete. Tunable
parameters are still needed to make the numerically interpolated contours legible. Topo-
graphic maps will still serve the needs for which they have long been intended and will
still be produced, particularly when the need for dramatic scale change becomes evident.

The focus of generalization for working displays in the context of a GIS, however, has
been necessarily sharpened with the advent of this new technology. We argue here that
minimal line simplification followed by an enhanced form of smoothing is an acceptable
level of generalization suitable for analytic terrain work. That is, for what Weibel terms
“model generalization”. We also suggest that it is better to address the problem of smooth-
ing by displacing contour lines by a calculable amount in x and y rather than 1) uniformly
misadjusting the entire DEM to achieve smoother results or 2) relying on mathematical
methods that are based on assumptions of the continuity of the cartographic line at the
expense of ignoring true breaks and discontinuities in the surface.

1.6 What the method is not

This proof-of-concept contouring method’s primary weakness is that it does not consider
neighboring lines while thinning and smoothing in its current developed state. The lack
of neighborhood information means that it is possible for adjacent thinned or smoothed
lines to cross, violating the rules of behavior for contours. This is despite a novel fea-
ture of this new method that considers terrain slope in dynamically setting a tolerance for
smoothing extent as described later in Section 3.5. Consideration of slope in formulating
a smooth contour certainly minimizes the likelihood of crossings but does not remove the
risk completely. Later in this case study, we devise a stress test for the possibility of cross-
ing contours by generating contours at a one-half-meter contour interval. The results of the
experiment are shown in Section 4.3.

Also, again due to the lack of a neighborhood context, certain basic generalization meth-
ods (i.e., aggregation or merging) that can remove collapsed or coalesced sections of lines
due to scale reduction are not currently available with our method. These weaknesses are
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acknowledged at appropriate specific points throughout the paper and can be remedied
in future work. In Appendices B and C, we speculate at some length on the shape such a
solution might take. The real thrust here, however, is to introduce our method of controlled
smoothing and to provide comparisons to certain popular alternative methods.

The prospects of adding upgraded checks for significant loss of detail using an ad-
vanced TIN data structure and methods suggested by Li and Sui [32] and Weibel [62] and
developed by Ware et al. [58] are discussed in the appendices and Section 5 dealing with
future research.

1.7 Organization of the paper

The remainder of the paper is organized as follows. Section 2 reviews several principal
methods employed today to ensure smooth contours as well as a description of the new
method being proposed here. Importantly, in Section 2 and Appendix A, we also outline
the proposed methods of testing and the formal criteria to be used in assessing the failure
or success of our methods. Section 3 describes the steps in our algorithm and the heart of
the geometric operations of line smoothing. Section 4 is an assessment of the success or
failure of this method in a series of tests comparing some alternative smoothing methods
using the criteria described in Section 2. Finally, Section 5 briefly summarizes conclusions
drawn from this work and discusses future directions of work.

2 Methods and materials

We begin this section with a description of the data used for testing as this permits us to
deal with specifics as we develop the methods used here. This is followed by a discussion
of predominant methods of smoothing for which we offer a typology. Where possible, code
has been developed for these alternate methods and implemented in our tests.

2.1 Test data

Our test data consists of two elements, a high-resolution bare earth DEM with one-meter
x, y spacing and observations at the ground surface or “bare earth” and, two, contours
numerically interpolated from this DEM [1, p.544]. These baseline contours are subject to
thinning to elicit the skeletal form of the line at the output scale and this serves as the actual
starting point for our method of smoothing and enhancement.

2.1.1 Sources of the data

The posts of the DEM matrix of elevations were developed using an even denser point
cloud gathered by a 2017 LiDAR survey of south-central Pennsylvania, USA. This survey
has a mean point spacing of 0.7 meters and is representative of LiDAR DEMs in the USA
[45].

The elevation data used in this study was developed by the author as a part of a GIS
project involving the Gettysburg National Military Park battlefield. The data represents
a small portion of the elevation element of the project. It is a one-kilometer by one-
kilometer square aligned with Zone 18N Universal Transverse Mercator (UTM) coordinates
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expressed in meters. At the prescribed resolution of one meter, the DEM is 1000 rows by
1000 columns for a total of one million points or elevation posts.

2.1.2 Conversion of the scattered LiDAR points to a DEM

The exact methods used to convert the irregular LiDAR observations to a DEM are not clear
from the available project documentation [45]. Presumably, this data was dense enough to
warrant a simple interpolation method, either nearest-neighbor interpolation or an Inverse
Distance Weighted (IDW) interpolation method using neighboring points as described by
Watson [59]. The point data were augmented by breaklines, primarily surface drain lines
and roads. This ancillary data helped create a better model [21, 35, 50].

A popular system for processing LiDAR data called LASTools was used for this data.
This system includes a LiDAR-to-DEM tool (lasgrid) with many DEM development options
[25]. It is not clear exactly which parameters may have been used in this conversion [45].

In general, this data is typical of the high-quality terrain models being generated by
LiDAR acquisition methods today [33,45,47,50]. As well, this is likely the type of elevation
model that will be used in the foreseeable future and so the process described here seems
particularly appropriate for smoothing and generalization of such data.

2.1.3 Vertical error of the DEM

Standard deliverables in terrain modeling projects today include estimates of the vertical
error of the elevation survey [54]. The vertical error of the data is important to this study
since it can be used to estimate a tolerance for smoothing locally as shown later in Section
3.5.

The “root mean square error” in height (RMSEh), developed from the comparison
of DEM elevations and precisely matching surface control points, is used to express the
vertical error of the terrain data [53].

For the 2017 DEM data used in this study, the error was determined by comparing 245
field-surveyed control points over the project area to interpolated values from the DEM
[45]. For this data, the RMSEh was found to be an impressive 0.122 meters in open areas
of the landscape. For vegetated areas, where the reflective return of the LiDAR is affected
by the boles and limbs of the trees, the RMSEh was degraded to 0.177 meters—still an
impressive error figure in comparison to older DEM methods and surveys.

2.2 Prominent approaches to smoothing contour data

We begin this section with a review of some prominent alternative methods of addressing
the smoothing issues examined here. Our method is one of many efforts to ensure smooth
and accurate contour results. Here we attempt to develop a typology of some prominent
methods based on the similarity of underlying characteristics or a common approach. A
number of these methods have been selected for testing of accuracy and smoothness in this
study to compare to our proposed method.

There are two basic approaches to achieving the desired results. The first category is
termed surface smoothing. Li and Sui [32] and Gokgoz and Selcuk [18] refer to these types
of smoothing as “indirect” versus the second category or “direct” method of line smoothing.
The indirect category operates on the height values of the underlying DEM before generat-
ing the contour lines. By adjusting the height of a DEM center point based on neighboring
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elevations of the data, using techniques adapted from image processing, the surface model
itself can be smoothed. The contours that result from this process are naturally smoother
in x and y by virtue of being interpolated from a smoothed surface model.

The second category, termed line smoothing, operates on the x and y coordinates of the
line after it has been produced from the unaltered baseline DEM. These data are dense and
are usually subjected to thinning in preparation for subsequent smoothing.

Several alternative methods selected from the two categories of smoothing are com-
pared here to our proposed method. We propose a direct method based strictly on the
geometry of the lines and driven by two basic parameters, a tolerance for thinning (TT )
and, from this, an automatically derived threshold value for insertion (IT ) of successively
finer points in the smoothed line (see Equations 1 and 3 in Sections 2.4.2.1 and 2.4.2.2 re-
spectively).

In the following discussion, surface and line smoothing categories are further subdi-
vided into divisions each with methods that share some basic similarity.

2.2.1 Surface smoothing with multiple iterations (5X smoothing)

The most widely applied method of contour smoothing is likely the simple averaging
method employed in an n-by-n moving window of a DEM. Several variations of this
method are widely known. First n may be set to any reasonable odd integer value >= 3
(e.g., 3, 5, 7, 9. . . ), but is normally assigned a default value of 3. Second, the smoothed
value may be set equal to a weighted average based on the collection of n2− 1 neighboring
elevation points within the moving window.

Finally, in this surface smoothing method, the number of iterations of smoothing can be
varied. In fact, multiple iterations of smoothing are widely recommended in GIS course-
work [30], in commercial GIS documentation, and in prominent articles such as Lindsay et
al. [34]. It is at this point that many efforts go awry by assigning far too many iterations
and suffering a loss of accuracy as a result. For example, the guidance in [30] was 10-15
iterations and, in [34], 5-10 times.

For testing in this study, we developed an intermediary smoothed DEM from the unal-
tered LiDAR DEM. We set n = 3, with weights all defaulted to a value of 1. A “modest”
number of five iterations of smoothing was applied. The resulting smoothed intermediate
DEM was then used to generate smoothed contours labeled in the tables as 5X Smoothing.

2.2.2 Numerically interpolated contour lines (NICL)

Contour lines are numerically interpolated from a DEM using a process termed “thread-
ing”, so called because the process consists of finding the bounding height values in a post
neighborhood for the next point in sequence in a developing contour line. This is a con-
servative linear interpolation method, which is a simple but appropriate technique given
the density of the DEM being used. It is worth noting here that the threading technique,
combined with the density of the DEM, results in oversampling of the contour line vertices,
something to be considered later as we review the results for line smoothness in Section 4.2.

If original blunders or other gross errors that may occur in the LiDAR survey data have
been resolved before creating the DEM, we are free to assume that the NICL centerlines
derived from the unsmoothed DEM are the most accurate contour baseline available. As
such, we will use this data as the baseline for tests involving both the horizontal and vertical
measures of error in the smoothed centerlines.
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The difficulty of balancing smoothness with accuracy concerns warrants an explicit
statement as to the tests to be performed, the criteria to be used to evaluate our method, and
the alternative methods investigated here. Details of this testing are relegated to Appendix
A. There are eleven data sets developed and used in our analysis which are described in
Table A-1. To facilitate the discussion, we present a summary of the data sets using labels
that are intended to provide a succinct reference in our discussions. This is followed by
Table A-2 describing our intended paired tests using the data sets and Table A-3 which
describes four test methods and the criteria for testing.

As a preliminary note to the following discussions, there are three “tolerances”, “thresh-
olds”, and “factors” employed here that can prove confusing. A “thinning tolerance” (TT )
pertains to controls on point selection and thinning, something undertaken before we begin
our smoothing. An “insertion threshold” (IT ) controls the addition of smoothed points into
the line during smoothing. A “tension factor” (TF ) is a control governing adherence of the
smoothed line to the original currently set at a fixed value of 0.4.

2.2.3 Surface smoothing with adaptive DEM smoothing (Kettunen FPDEMS)

Recent research has attempted to address the shortcomings of simple surface smoothing
methods. These are adaptive smoothing techniques that constitute a second division of
surface smoothing methods. Two recent papers are cited as examples here and both present
arguments against smoothing of the height data using simple methods [29, 33]. More im-
portantly, however, they also present alternative and more advanced methods of smooth-
ing in height that mitigate some of the significant loss of details such as turnbacks at hy-
drographic features and switchbacks at ridge protrusions. By identifying significant local
inflection points in slope in the DEM, and accounting for this information in their adap-
tive smoothing approach, these methods are an improvement over multiple iterations of a
conventional averaging filter described here.

In a particularly interesting approach, Lindsay et al. [33] coined the term feature-
preserving DEM smoothing (FPDEMS). As the phrase implies, these are methods that con-
strain the magnitude of smoothing in slope-sensitive areas of the DEM. Lindsay’s method
uses distributions of surface normals about a DEM center point to dampen smoothing.
Points having a higher variation in normal directions computed relative to their neighbors
are smoothed less since they likely correspond to breaks in slope.

An equally ingenious FPDEMS-type method by Kettunen et al. [29] also offers assurance
that significant features are not completely removed. This method was selected as repre-
sentative of this division and was implemented and tested for accuracy and smoothness.
The method by Kettunen uses the topographic position index (TPI) to control how light
and heavy smoothing values are combined locally about a center point in the DEM. The
method:

1. computes two intermediate reference DEMs, both conventionally smoothed, one
lightly smoothed (1X) and the other heavily smoothed (5X);

2. computes the local difference of elevation of each center point to its neighbors;
3. computes the lowest and highest local difference in elevation values for the original

data set; and
4. normalizes the original differences using the overall lowest to highest range.
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It then computes a new smoothed DEM value drawing proportionally and inversely
proportionally from lightly and heavily smoothed versions of the original DEM respec-
tively. Smoothed contours are generated from the new, composite smoothed DEM.

2.2.4 Surface smoothing using a local patch of elevations (not tested)

A third division of the surface smoothing category is represented by a hybrid method by
McCullagh [36] and is presented here to complete a range of available surface smoothing
methods. The term “hybrid” is used here to denote the fact that the method combines
interpolation and smoothing into a single step.

This method employs local patches of data, either local neighborhoods of DEM data
or local triangular patches based on a TIN. Drawing on methods adapted from geological
interpolation of subsurface data, the method simultaneously interpolates height at inter-
mediate x, and y positions within the patch and then “laces” (or “threads”) the contours
through the locally-smoothed patch.

The method is characterized by the use of higher order methods of mathematical in-
terpolation, specifically a “Hermitian bicubic function” is fitted through the four corner
points of a local DEM cell (i.e., a local 2 x 2 neighborhood of DEM posts) using a larger
neighborhood of overlapping 3 x 3 neighborhoods to compute the equations.

Illustrating this method with a DEM, the first derivative values of the corners are then
used to interpolate smooth intermediate values along the neighborhood edges and then
broadcast to the predetermined finer subcell locations within an original 2 x 2 neighbor-
hood. The result is a smoothed local surface interior to the initial 2 x 2 neighborhood.
These interior points can be threaded directly yielding a portion of a smoothed line that
accumulates into a completed line feature. The nature of the method assures that the lines
will not cross or otherwise self-intersect. In this regard, this is a notable improvement over
our recommended method of LACA smoothing.

McCullagh’s approach has an acknowledged drawback that it is computationally in-
tense. More fundamentally, it is based on assumptions regarding the continuity of the
lines [40]. Methods making such assumptions tend to produce unnaturally smooth results.
This critique applies to this method as well as to a similar line-smoothing technique de-
scribed below in Section 2.3.1 which follows shortly.

2.3 Line smoothing in x and y

The alternative to the surface smoothing category is directly smoothing the lines them-
selves in x and y. The first division here involves methods employing higher-order so-
lutions similar to the technique of McCullagh cited above. In general, such techniques
are considered appropriate for smooth surfaces in engineering design such as automobile
surfaces and in Earth science circumstances where reliable data are sparse as in geologic
subsurfaces or for maps of rainfall based on scattered observations at widely separated
weather stations.

One of the implications of increased precision and resolution of LiDAR terrain data is
that we are working now on a well-defined landscape surface where discontinuities and
breaks-in-slope abound. For surface terrain modeling, we are no longer working from sparse
data conditions where uncertainty in the data justified overly-smoothed contours. The ten-
dency of the CAD-based methods (in fact, any method that advocates too great a smooth-
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ness in the lines) is to produce overly smoothed results (see McCullagh [36], Figure 9 and
the varying degrees of smoothing in [6]). Interestingly, researchers in human perception
have noted that while smooth lines are preferred, there is a fine distinction made between
moderate, favored smoothing and excessively smooth lines, which are not preferred [3].
Today, smoothness of this magnitude should be considered a liability for terrain surface
modeling.

2.3.1 Line smoothing with a spline technique (tested as B-Spline Snakes)

B-Spline Snake functions for line smoothing “deform” (i.e., transform in a positive man-
ner as through pressure) a rough line into a smoothed one. The snakes are so named
because, when the processing for deformation solutions are viewed interactively, they re-
semble writhing snakes.

Guilbert and Saux [22] describe a novel B-Spline Snake function for contour smooth-
ing that seeks to correct the problems with over-smoothing noted here and, to their credit,
provides measures of constraint in the process. To this end, they devise a line deformation
model that minimizes the sum of the “internal energy” (a measure of the line tension devel-
oped from the first derivative of the line) and “external energy” (a measure of the curvature
of the line). Again, to their credit, they realize the dangers of topological distortions when
smoothing and so they couple the line generalization function with checks for intersections
in their process, something our proposed method does not do.

But with its insistence on maintaining the continuity of the line (and also, we believe,
erroneous underlying assumptions regarding the degree of smoothness and continuity at
the Earth’s surface), the B-spline functions, driven by universal parameters, cannot pre-
cisely and locally constrain smoothing within as dynamic, tight, calculable bounds as the
LACA method does.

In addition, the computations involved in the solution of the B-spline functions and
numerous iterations in this method are far more costly and involved than the computations
needed for the proposed method [5, 6].

For comparison to our method, and to illustrate the results of higher-order line smooth-
ing, tests were conducted using the B-Spline Snakes function available through QGIS 3.16,
the open source GIS used in this study.

2.3.2 Line smoothing methods: Using intermediate structures (not tested)

A second division of the line smoothing category worth noting here recognizes the neces-
sity of using advanced intermediate structures to detect and avoid intersections in thinned
and smoothed data.

One common thread among these efforts is the use of a TIN to relate the vertices of
contour lines [17, 57]. These methods augment the x and y values of the lines by adding
surface points at critical junctures where three vertices from a single contour line connect
form a “flat triangle”, a “problem area”, or a “shelf triangle”. That is, when an erroneously
inferred flat triangles is formed when three points from the same contour (or contours
of equal height from nearby lines) are used to create a triangle. In particular, Gokgoz and
Gulgen [17] recognize the hidden opportunity in these areas where ridge and drain features
can be automatically derived from adjacent flat triangles and then added to the contouring
process. Ware [57] proposes a general solution to the problems of “flat triangles” that inter-
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polates a smoother surface by introducing data points that force swaps of certain triangle
edges, thus replacing flat triangles and improving the model.

Li and Sui [32] describe an integrated approach to the problem of line smoothing that
is based on a “natural principle of objective generalization.” This approach shares at least
two points with the proposed method. In this approach, these researchers imposed a refer-
enced background grid cell based on a minimum “smallest visible object” (i.e., 0.6-0.7 mm
square at scale) to develop a generalized version of the contour line. This is somewhat sim-
ilar to our proposed tolerance for the elimination of small closed polylines based on line
thickness and output scale introduced below in Equation 2. The method also eliminates
visually insignificant closed lines as proposed in our method. Li and Sui also rely on a
local triangulation of adjacent contours to develop contours at a new offset interval when
called for (e.g., when changing from a two- to five-meter contour interval).

Gokgoz [16] employs a hybrid approach, combining line thinning and smoothing in his
method. By using the accuracy error bands based on planimetric error combined with de-
viation angles at the vertices, he can select the original line’s salient points and stay within
the line’s original error limits. Gokgoz anticipated several of the features we advance in
our proposed method, including using model error to establish a planimetric error band
capable of constraining lines. Gokgoz’s method is based on incident angles that deviate
outside the error band. We use an insertion tolerance and then measure after the fact our
success against the error bands.

2.4 Line smoothing using coordinate geometry

The third division within the category of line smoothing includes what we advocate, that
is, smoothing using only the coordinate geometry of the line itself. We begin with an in-
troduction relating several past line-smoothing efforts to our proposed method. We follow
this with an overview of our proposed method.

2.4.1 Related methods based on coordinate geometry

Other researchers have formulated algorithms that rely principally on the coordinate ge-
ometry of the contour lines. In particular, the method described here shares a great deal
with one proposed by Dutton where midpoints and a bisecting angle are similar to what is
described later in this paper [13]. However, Dutton’s method of control of the smoothing
process differs, relying on global roundness and smoothness factors which he cleverly re-
lated to the fractal dimensions of the line. In our solution, we rely upon a simple, repeatable
geometric sequence of interpolation of new points to smooth the line.

Dutton’s work is acknowledged as the first to enhance smoothed lines [7]. Here we offer
enhancement techniques that mimic in reverse the methods of Douglas-Peucker thinning,
that is, adding points incrementally and within a point insertion threshold to produce a
smoother line. This arrangement is thought to produce an optimal point density for a
given level of accuracy and symbolized line thickness of the contours.

The work here, specifically its reliance on simple coordinate geometry and ratios, is
perhaps most akin to one of the early algorithms for smoothing developed by George
Chaikin and known as the “corner cutting” method [8]. The use of ratios to iteratively
create new smoothed positions in the line is common to both approaches. Chaikin applies
a constant factor in his method while, as we shall see in the following section for the pro-
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posed method, the smoothing ratios used here can be dynamically computed considering
local terrain slope by referring to the underlying DEM.

This paper also shares much with a method by Christensen who described an inspiring
“ruled surface” method of smoothing the lines [9]. With this method, the proposed one
shares the concept of intervals of the line and methods of geometric projection of points in
the interval. Instead of solving cubic polynomial equations mathematically, Christensen’s
“eclectic” geometric method emulates a graphic method developed by engineers at the turn
of the last century [9]. Here, wherever possible, we opt for the simplest and most robust
methods which are frequently geometrical in nature.

2.4.2 Overview of the proposed smoothing method (LACA 6K Smoothing)

In this section of the paper, we provide an overview of our proposed method of line
smoothing. We describe the new algorithm and proof-of-concept for smoothing contour
lines in x and y that have been previously thinned using an easily computable tolerance
based on the output scale. A novel aspect of the new method is that it is capable of adjust-
ing the degree of smoothing on a point-by-point basis according to the local ground slope.
A principal strength of this approach is that all the computations are geometrically based,
making it simple, fast, and robust.

The smoothing proposed here is composed of three basic steps, all operating in the
horizontal domain except for a brief consultation with the DEM to determine local slope
variation which can further constrain the line in areas of increasing slope.

First, the Douglas-Peucker method is used to selectively thin the dense, reference NICL
Baseline contours. Second, our process eliminates visually insignificant, small, closed poly-
line areas. Finally, our method iteratively adjusts the line and introduces new smoothed
points into it until we have ensured a smoothed result that adheres calculably close to the
original, accurate line position.

Line thinning of the NICL baseline using Douglas-Peucker. The selective thinning of
our process is driven by the output scale and symbolized line thickness which develop the
prescribed thinning tolerance (TT ) expressed in ground units. A simple formula translates
symbolized line thickness to a ground distance needed for thinning as follows.

TT = Scale ∗ Th/1000 (1)

where

• Scale is the denominator of the reference output scale
• Th is the line thickness of a symbolized contour line in mm
• 1000 is the constant conversion factor for mm to m

The Douglas-Peucker method of thinning is used here, in part because of its proven
durability since its introduction 50 years ago [12] [1, p.429]. As well, the method is based
on the geometric properties of the lines alone to select the points with the highest infor-
mation content, the ones that are most critical to defining the centerline of the data. Those
points not selected are thinned leaving a meaningful caricature of the line. The secret to
a successful application of this method is to perform only a necessary amount of thinning
which, as we demonstrate, is calculable.

JOSIS, Number 28 (2024), pp. 3–73



18 MILLER

Equation 1 sets appropriate tolerances at scale and we will demonstrate the results of
an adaptation of this tolerance for 1:50,000 scale later in Section 4.2.4.

Eliminating small contour polygons from the NICL baseline. The original NICL con-
tours consist of 1266 polylines, the vast majority of which are isolated, small closed poly-
lines (or polygons—refer to Figure 14). This is considered to be much of the noise in this
LiDAR-derived DEM and the simplification process used here not only reduced vertices
from the lines but also, for very small areas, entire lines. The results were telling. Of the
1266 polylines, 1173 were found to be degenerate polygons (i.e., the contour line area had
collapsed upon itself in thinning and the computed area is equal to zero) or closed and
too small to display at the output scale. Both these types were eliminated, leaving only 93
meaningful candidate lines to be smoothed.

Operationally, the concept of “small” is rooted again in scale as it was when considering
the line thickness and the thinning tolerance. At 1:6,000 scale, a minimum sized square
area of five times the contour line thickness was used experimentally. A five-by-five-line
thickness (5 * 1.2 meters) allows an interior area of three-by-three-line widths, allowing
for two-line thicknesses in both x and y for the bounding line itself. In total, the smallest
allowable area for a display at 1:6,000 scale is six meters square on the ground or 36 square
meters.

MIN_AREA = (TT ∗ 5)2 = (1.2 ∗ 5)2 = 62 = 36 square meters (2)

At a 1:6,000 scale, an “insignificant area” is computed to be 1 mm by 1 mm in size. This
is quite small and thought to be a conservative estimate for a minimum size to be used to
cull the lines. A closed polyline with an area found to be less than 36 square meters was
culled from the list of all polylines for the 1:6,000 scale displays. This simple step eliminates
most of the objectionable background clutter from the displays. However, as a side note
at this point, one weakness in our approach is that opportunities to aggregate clusters of
small, nearby closed contours into one large enough to be portrayed are missed with the
currently implemented method [38].

Insertion point threshold. The third step in our smoothing is governed by the insertion
threshold (IT ) equal to half the TT value which ensures that the final line is computably
smooth enough at the output scale and symbolized line thickness.

IT = TT ∗ 0.5 (3)

In a manner complementary to the Douglas-Peucker line-thinning algorithm, simple ge-
ometric relations in the contour line data itself are used to incrementally test and introduce
new smoothed points. As we hope to demonstrate in our results, IT ensures an optimally
smooth result using a minimum number of added points.

To illustrate that our method is geometric in nature, we employ frequent use of ratios
of sides applied to x and y deltas invoking the principle of similar triangles (reference
Figure 10 in Section 3.3). Self-similar replication methods then achieve the desired delicate
balance between smoothness and accuracy of the final line data (reference the circles shown
in Figure 11 in Section 3.4).
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2.5 Tests to be performed and the criteria to be used

Table A-2 in Appendix A enumerates 25 tests and comparisons related to the data sets
labeled in Table A-1 representing alternative smoothing methods.

First, we deal with the horizontal accuracy of the lines using each of two methods one
of which we have adapted from the literature (Method 1 in Table A-2 in Appendix A). As
an additional test, a redundant test to bolster our confidence in results, we have developed
an original test method in which we infer horizontal accuracy from departure in the stated
height of a smooth point x and y. We compare the observed height accurately interpolated
from the original DEM to the stated contour height of the smooth line (see Horizontal
Accuracy and Method 2 in Table A-2)

2.5.1 Horizontal accuracy tests (method 1): NICL Buffers versus Smoothed Vertices

The tests for horizontal accuracy in our study involve an assessment of the smoothed re-
sults for each tested method with the NICL Buffer 0.6 and NICL Buffer 1.2. Instead of us-
ing the normal metric of the length of the smooth line lying within the tolerance, here we
have calculated the percentage of smoothed points inside the tolerance distance [19]. For
a method to pass the test, we must establish that a significant number of our smoothed
points lie within 1.2 meters and 0.6 meters of the buffers.

Again, the buffer zones for testing are to be generated using the unthinned NICL Baseline
center lines minus the small closed shapes that are not considered visibly significant at the
output scale of 1:6,000.

Process quality assurance as a testing criteria. Once we determine the percentage of
points within epsilon distance to a line, the issue becomes how do we assess the signifi-
cance of these values? Here, we rely on the literature on process quality assurance and the
“Six Sigma” criterion [15]. Quality assurance methods have been successfully applied to
a wide range of processes in recent years. For our purposes, we adapt the percentage of
“error-free” points (i.e., those falling inside the buffers), a simple analytical component of
these quality methods, for use in assessing the horizontal accuracy of the smoothed con-
tours [1, p.901].

The distribution of smoothed points about the original line is expected to produce a
normally distributed variation and, specifically at the large scale of the test cases, we set a
high standard of +/-3 sigma for the points lying within 1.2 meters. Using the percentage
proportions for a normal curve, we expect 99.73% (the percentage corresponding to +/- 3
standard deviations or sigma) of the smoothed points to lie within the buffer in ground
distance represented by a symbolized contour line thickness set at 0.2 mm. At a scale of
1:6,000, what Guilbert and Saux [22] and Imhof [24] agree is a large to very large scale, we
also expect 87% of the points to lie within the more stringent test measure of 0.6 meters.
This half value corresponds to +/- 1.5 sigma and this translates to 86.64% of the points. We
expect that percentage or greater of the points to lie within half the line thickness of the
original numerically interpolated lines.

Computation of the thinning tolerance and insertion threshold. Using Equations 1 and
3 and a line thickness of 0.2 mm, TT and IT values are computed as: TT = 6, 000∗0.2/1000 =
1.2m and IT = TT ∗ 0.5 = 0.6m.
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Figure 2: Illustration of the 0.6- and 1.2- meter buffer zones used in horizontal testing for
test method 1. The dark red buffer is the NICL Buffer 0.6m data set. The outer pink band
represents the NICL Buffer 1.2m data set. The scale is 1:500.

The former value ensures upfront adequate testing for minimal thinning of the points,
while the latter value is the criterion used to assess whether the smoothing should insert
an additional smoothed point as it proceeds locally. See the 0.6- and 1.2-meter buffers
portrayed in Figure 2.

2.5.2 Horizontal tests (method 1): NICL Buffers versus other smoothing methods

In addition to tests of the LACA 6K Smooth compared to the NICL Buffers (test 1 and 2),
Section 4 also includes the results of accuracy for several secondary tests of other smoothing
methods discussed here. This includes the following proposed tests:

1. an experiment with B-Spline line smoothing from a GRASS generalization module
accessible through the QGIS 3.16 system (B-Spline Snakes Smoothing);

2. an experimental implementation of generic surface smoothing of the data by averag-
ing and at 5 iterations of smoothing (5X Smoothing); and

3. an experimental implementation of the Kettunen method (Kettunen FPDEMS).

All these tests are conducted at a 1:6,000 scale and all will be evaluated against the NICL
Buffers using the standard 0.6- and 1.2 meter-buffers described earlier (see test descriptions
3 through 8 in Table A-2 in Appendix A).

We have also included a test of our smoothing method using a medium output scale
of 1:50,000 (Tests 9 and 10). We expect the simplification necessary for this scale will cause
a reduction in the percentage of smoothed points lying within our buffers and the results
may include some coalescence of the thinned or smoothed results. However, we hope to
successfully demonstrate by our results in Section 4 that we can produce usable contours
at a smaller scale with our method. See the results in Section 4.2.4 and 4.2.5.
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2.5.3 Horizontal tests (method 2): A test of x and y accuracy by inference using vertical
displacement of the smoothed lines

As an added means of assessing the first criterion, the x and y accuracy of the line smooth-
ing, we offer a new method that evaluates the estimated elevations from the DEM at the
smoothed x and y positions. See Tests 11-14 in Table A-2 and test type 2 in Table A-3.

The displacement in height of vertices from the stated contour value associated with
their parent line is an indirect measure of the success or failure of our method to produce
an acceptably accurate display in x and y. Smoothed points lying closer to the NICL Baseline
are certain to match more closely in height. Importantly, this new method is amenable to
hypothesis testing, so it provides a more robust test of our methods than horizontal tests
using Method 1, the horizontal accuracy bands alone. Refer to Figure 3.

Figure 3: Test method 2: a comparison of stated contour line values in a smoothed line
versus height estimates using the original DEM.

Vertices such as point A in the smoothed line in Figure 3 have a nominal height of 166
meters. This is the stated contour height of the smoothed line. However, as a test, we
can interpolate an estimate of an actual comparative height from the unsmoothed DEM
computed in this manner using the x and y of the smoothed vertex. Cumulatively, the
deltas in height (∆HgtA in the figure) can be summed (mean and standard deviation) and
compared with the values of the NICL Baseline in a test of means to gauge how closely the
lines match. Again, we are inferring a change in x and y from an observed differential in
height.

In Figure 3 the brown line represents the true location of the contour at 166 meters
(NICL Baseline) and the black line is the relocated LACA smoothed line (LACA 6K Smooth).
According to the smoothed line, point A has a nominal value of exactly 166. But as in-
terpolated precisely from DEM posts, the height is actually 166.056 meters. From this, we

JOSIS, Number 28 (2024), pp. 3–73



22 MILLER

subtract the nominal height of 166.0 rendering a vertical displacement difference of 0.056.
This displacement difference (∆HgtA in Figure 3) becomes an observation that can be used
cumulatively to compute a mean and standard deviation which supports hypothesis test-
ing (see Test Method 2 Hypothesis Testing I in Table A-3 in Appendix A).

2.5.4 Angularity measures of smoothness

The second criterion we will use to define the success of our efforts, that of the contour
line’s smoothness, is the more difficult of the two criteria to operationally test. For a test,
we offer a new measure of angularity that compares successive, overlapping three-point
sets in the smoothed line. At each interior vertex of the line (i.e., beginning at the second
point in the line and ending at the next to last vertex), we compute the “enclosed angle”
(see Figure 4). In this manner, we generate statistics for each vertex for all lines and each of
any two compared data sets (i.e., any given smoothing method and the NICL Baseline). We
then subject the statistics for two compared datasets to hypothesis testing using the mean,
standard deviation, and the number of points to gauge the differences between smoothed
results and the NICL Baseline data. See Test Type 3 in Table A-3 in Appendix A.

Figure 4: Computation of the enclosed angle at a vertex.

In Figure 4, for a directed line composed of five vertices and three interior angles, and
for any current vertex (CurrIntvlV tx), the enclosed angle can be computed by forming two
vectors hinged at CurrIntlV tx and taking their dot product. As shown in the code frag-
ment depicted in Figure 4, the arccosine of the product of the magnitude of the two vectors
(directed from CurrIntvlV tx to PrevIntvlV tx and from CurrIntvlV tx to NextIntvlV tx),
divided into the dot product renders the unsigned enclosed angle at the CurrIntvlV tx
or V txi. The constant conversion factor RAD2DEG translates the angle to degrees from
radians which are the normal metric for trigonometric functions.
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The color codes for the angles also indicate the orientation (i.e., right or left) of the
CurrIntvlV tx to a directed imaginary line connecting PrevIntvlV tx to NextIntvlV tx (see
Figure 4). The vertex in the “blue angle” lies to the left of the directed line segment (arbi-
trarily assigned a negative angle value). The “red angles” lie to the right of the line and are
considered to be positive angles.

This convention was originally adopted to provide a simple test of the symmetry of the
angles along a line by simply summing the angles and comparing the result to 0.0. This
approach produced erratic results and was abandoned, but two new methods for testing
symmetry are presented here. See the proposed tests of symmetry in Section 2.5.5.

The frequency distribution of the enclosed angles associated with NICL Baseline vertices
is presented in Figures 5a and 5b.

Using the convention of positive and negative angles, the frequency distribution of the
angles appears to be bi-modal as seen in Figure 5a. For hypothesis testing, the negative
side of the distribution is shifted by 360 degrees (expressing the complementary angle) to
render a normal-looking curve (see Figure 5b). This transform ensures that all angles are
expressed relative to the same (positive) side of the line.

Specifically, in the shifted data, we expect the mean angle to closely approach 180 de-
grees. The distribution in Figure 5b is a decidedly leptokurtic distribution with a marked
peak in frequency for values near the mean. This is thought to be consistent with angles
found in a well-behaved and smoothed line and thus, at this point, this is an unusual find-
ing. We expected the NICL Baseline data to exhibit high angularity with a larger standard
deviation and to be characterized by a higher frequency of acute angles. We did not expect
to see the unusual percentage of angles lying close to 180 degrees. To illustrate this concern,
the two innermost middle bins of the distribution shown in Figure 5 range from 177.5 to
182.5 degrees and claim 31,000 of 69,700 total points. See further discussion with results in
Section 4.2.2.

2.5.5 Test methods for assessing smoothed contour line symmetry

The problem statement in Section 1.4 includes a requirement to symmetrically smooth the
contour line. Symmetry in a geometric shape is characterized by a composition of exactly
corresponding parts arranged facing each other about an axis line. In our case, the shape is
a line inspected at each successive overlapping three-point sequence (i.e., an interval of the
line) and the axis in question is the medial axis defined by an angle bisector for the interval.
Full, operational definitions of these terms follow in Sections 3.1 and 3.2.

Two original methods were devised for assessing symmetry. The first assesses the data
from LACA 6K Smooth and compares corresponding angles formed between the medial axis
point and the vertices introduced by smoothing in the interval (see Figure 6). Since the raw
angle values may vary between corresponding vertices, the measure is normalized as a per-
centage of the larger angle for either side of the interval (see the diagram and computations
in Figure 6).

The results of this analysis render a record of observation for each matching pair of
smoothed points about the medial axis. Taken together, all the observations can be com-
pared using regression analysis between the first and second half of the contour line inter-
val. The coefficient of determination for the relationship can be interpreted as a measure
of strength and the slope of the regression line a departure from the ideal symmetry case
where Previous % = Next % = 1.0—a case of perfect symmetry.
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(a) Distribution of signed angles. The distribution of the signed angles appears to be bimodal. A
transformation of the data is in order. The equation is derived from the EXCEL IF statement used to
shift negative values to achieve a normal distribution of angles shown below.

(b) The transformed dataset. The negative angles have been shifted 360 degrees to align angles to the
positive side of the line and the distribution now appears as a normal though leptokurtic type.

Figure 5: Distribution of enclosed angles for the NICL Baseline data.

A second test method for symmetry involves projection of the LACA 6K Smooth vertices
onto the original NICL Thin 1.2 m lines that serve as the starting point for smoothing (see
Figure 7). In this method, the interval is again divided into halves: the points lying between
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Figure 6: Symmetry assessed by paired comparisons of angles in an interval.

a point A and point C ′ represent the previous section of the interval while points C ′ to B
represent the next section of the line interval. Corresponding points (i.e., projected P1 to
N1, projected P2 to N2, etc.) provide records of observations, the building blocks for a
regression analysis where we can assess the strengthof the symmetry and the departure of
the regression line from the ideal.

2.6 Smoothing methods not tested

At the outset, we intended to test at least one method from each of the divisions of smooth-
ing cited here. We fell short of this goal. Despite a surface smoothing Hermitian method
being offered in QGIS 3.16, the function did not work using our test data. The method
in McCullagh [36] was not sufficiently detailed to allow a direct implementation and, as a
result, the hybrid surface smoothing method could not be easily tested.

Also, in the second division of the line smoothing category noted in Section 2.4, the
methods of Li and Sui [32] are not tested here. These methods use triangulation of the con-
tour lines and were considered beyond the scope of this effort. Including triangulation with
the efforts described here is something to which we aspire. These aspirations are explored
by an algorithm proposed in Appendices B and C and in Section 5 in the recommendations
for future work.
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Figure 7: Symmetry assessed by paired comparisons of projected points and lengths in an
interval.

Experimentation in the current paper is limited in large part due to the need to develop
an adequately flexible TIN structure. The work by Ware et al. [57] describes a topological
TIN for line generalization, though additional tweaks to the structures may be needed for
contours per se (see Appendix A for details). Also, algorithmic modifications would be
needed that defy the standard Delaunay criterion for swapping edges (even beyond the
standard limits on edge swapping across feature edges in a conventionally constrained TIN
model). The methods would need to introduce spot height point estimates and derived
valley and ridge features at salient points in the terrain much in the manner of Ware [57]
and Gokgoz and Gulgen [17].

3 Algorithm for smoothing

This section describes our algorithm developed to smooth and enhance the contours. This
includes:

1. the development of an initial interval using midpoints;
2. development of the medial axis of the interval;
3. computing a limiting displacement value for the smoothing;
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4. a description of the symmetric smoothing process itself as it devolves into sub-
intervals; and

5. the criterion used to insert new, smoother points into the line.

Finally, we illustrate the dynamic nature of the smoothing with an actual example in-
terval from a randomly selected section of a line.

As a note, prototype code was developed for this study in ANSI C using the GNU
compiler and debugger, both adapted to run on Windows 10. All the executable code ran
in well under 2 seconds on a Dell XPS 8920 with 16 GB of RAM. The times include IO times
for debugging prints inside loops and writing the output results to disk.

3.1 Preparing to smooth a line: derivation of the intervals from mid-
points

Refer to Figure 8.

Figure 8: Derivation of the intervals from midpoints.

The algorithm described here is a local method operating on a single interval (Intk+1)
of a single line at a time (Li). An interval consists of three consecutive points: two mid-
points inserted into the simplified line and shown in red and an enclosed original vertex
from Li in blue (points Pj , Pj+1, and Pj+2 in Figure 8). All intervals of all lines Li,i=1,N are
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processed to develop and insert midpoints into a doubly-linked list representation of the
polylines.

The midpoints define the maximum extent of an interval and a point of symmetrical
transition in the smoothed line between adjacent intervals. The original point in the inter-
val k + 1, Pj+1, is also labeled as vertex C to complete the “triangle” ∆ABC which is an
alternate representation of the initial interval, Intk+1 (see Figure 8).

3.2 Finding the angle bisector for point C and a medial point M on the
boundary of the interval along segment AB

Intuitively, the smoothing should be symmetrical within ∆ABC and centered on a medial
axis of the triangle from point C to a specified medial point M lying on segment AB. The
derivation of this medial axis point is described in this section.

Refer to Figure 9. The specific problem may be stated as follows.
Given the interval coordinates of points A and B (segment mid-points introduced into

the original line) and C (an original vertex of the line), the segments AB, BC, and CA, and
the lengths of these segments, a, b, and c, find the coordinates of a point M , the medial axis
point and the intersection of a ray bisecting the angle at C and extending from C through
AB.

The individual delta x and y components (∆x and ∆y in Figure 9) of segment AB are
important and are retained for use in computing the x and y coordinates of point M (equa-
tions 10 and 11).

∆X = XB −XA (4)

∆Y = YB − YA (5)

Finally, the coordinates of point M can be developed using the R ratio and the delta x
and y for AB as shown in Figure 9. A “straightforward” implementation of this method
invokes use of rotations of line segments, and line intersections. As elsewhere in the paper,
we seek a simpler and more efficient solution, if possible, preferably one involving ratios
applied to x and y differences.

From the Angle Bisector Theorem, we have:
(AC/AM) = (BC/BM) = K, always a constant ratio > 1.0. Expressed in terms of

lengths, let the distances d and e in Figure 9 represent the distance from A to M and B to
M respectively. Restating the Angle Bisector Theorem in terms of these lengths:

(c/d) = (b/e) = K (6)

This ratio expression of the Angle Bisector Theorem is derived by using algebraic rules
for manipulating ratios (see Euclid’s definitions for equivalencies at https://mathcs.clarku.
edu/~djoyce/elements/bookV/defV14.html). An important expression of the Angle Bisec-
tor Theorem can be developed for the sums of the lengths of the sides:

(c+ b)/(d+ e) = K (7)

Manipulation of the known lengths of sides c and b can be used to develop a proportional
ratio, R. This ratio can be applied to the coordinates of segment AB to develop lengths d
and e and, more importantly, the coordinates of point M .
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Figure 9: Construction of the medial axis point M and the segment CM. Segment CM di-
vides the angle at Point C into equal portions and is the symmetrical axis for the initial
interval ABC.

c/(c+ b) = d/(d+ e) = R (8)

The ratio we seek, R, can then be expressed simply as a proportion using known lengths
c and b alone:

R = c/(c+ b) (9)

The coordinates of M are

MX = (∆X ∗R) +AX (10)

and

MY = (∆Y ∗R) +AY (11)
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The derived point M lies on the medial axis from point C of triangle ABC. This line
subdivides the angle ACB, ensuring that the smoothing will be symmetrical within the in-
terval about the medial axis CM . As the original interval develops into finer sub-intervals
(e.g., AC ′D and C ′EB), the angles approach 180 degrees while the medial axis remains
symmetrical and approaches 90 degrees.

Point C ′ expresses the limits of smoothing as described below in Figure 10.

Figure 10: Projections of points C’, D, and E in the Line Interval ABC Ratios of triangles and
x and y delta values are used to compute offset coordinates. The constant use of the ratio,
TF, is the basis for replication of the geometry at the initial interval ABC and in subsequent
sub-intervals AC’D and C’BE, etc.

3.3 Using the distance C to point C’ as a limit for smoothing

The use of ratios applied to differences in x and y renders many similar right triangles and
the ratio R, an expression of the Angle Bisector Theorem, can be used again and again to
reveal the coordinates needed for both intermediate and final smoothed points.

If the smoothing were permitted to range as far away from C as point M in an interval,
the result would be less than desirable. The line would be decimated and its appearance
would approach that of the connected midpoints illustrated in Figure 4. As well as being
aesthetically objectionable, this would undermine the likelihood that accuracy would be
met and that the acute angles of the line would not be reduced. Some limits to displacement
along the line of C to M are needed.

This can be accomplished by setting a factor that is a portion of the total distance of C
to M . This “tension factor” TF (to borrow a term from spline smoothing concepts) is a ratio
varying from 0 to 1 and is applied to the delta x (∆xCM ) and delta y (∆yCM ) from point
C to point M to compute a new smoothed or displaced location for the point C designated
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in Figure 10 as C ′. Similar computations employing the ratio are used to compute the
locations of points D and E. See points F , G, H , and I in Figure 11 to reveal the next level
of smoothing and what would be symmetric in new sub-intervals such as AD′F , D′C ′G,
C ′E′H , and E′BI .

Figure 11: Successive sub-intervals AC’D and C’BE of the original interval ABC. Further
sub-interval subdivisions of the line are possible, including AC’D into D’C’G and AD’F and
C’BE into C’E’H and E’BI. The process repeats recursively until IT, the insertion threshold,
is not exceeded.

This recursive process of geometric replication represents the heart of our smoothing
algorithm.

In this strictly geometrical approach to line smoothing, processing an interval of the line
involves displacement of the point C to position C ′ along the medial axis towards point M .
The amount of smoothing or offset can be controlled in two basic ways. First, a general
constraint percentage can be applied to each interval of the line for uniform smoothing.
Second, we can develop a modified constraint percentage by considering the local slope of
the terrain.

3.4 A description of the symmetrical smoothing process

Refer to Figure 11.
The original interval ABC is recursively divided into two new sub-intervals AC ′D and

C ′BE lying on opposite sides of the medial axis represented by the ray along CM . If this
division passes the threshold described in Section 3.5 for the insertion of the new points,
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the process repeats with D′ and E′ and AD′F and D′C ′G, etc. In this first method of
smoothing control, the tension remains constant for all intervals and all lines. A value of
TF = 0 means that the line is not smoothed (point C is not moved) and TF = 0.4 means that
the line is smoothed to a new location at point C ′ 40% of the way from point C toward point
M . Note that a value of TF = 0.4 worked well under test conditions and is recommended as
a default value for this method of smoothing control. Theoretically, the smoothing control
could range from 0 to 1.0 with a TF value of 1.0 resulting in the relocation of the line to
point M . Aesthetically, 0.4 errs on the side of the medial axis towards C, the original point
in the contour line. This is appropriate given our desire to also stay within the bounds of
the original line.

Notice that the medial axis angle increases (i.e., approaches 180 degrees) with each sub-
interval replication level meaning that the medial axis angle approaches 90 degrees or nor-
mal to the original line. This relates back to the issue of readability of the contours: smoother
lines enhance our ability to visually estimate a normal to the line and to interpolate eleva-
tions at points intermediate to consecutive neighboring contours.

The second control method for x, y smoothing is a bit more involved relying on the
local vertical slope along the line C to M to dynamically modify the tension factor, TF. It is
described in detail in the following section.

3.5 Using terrain model vertical error and local slope to develop a dy-
namic, locally constrained x, y displacement for smoothing

Refer to Figures 12 and 13.
The objective of this second method of smoothing control is to develop a refined es-

timate of the displacement tension factor, TF, by dynamically adjusting the percentage
change on a local point-by-point basis (i.e., a TF value potentially something less than 0.4
in steep areas and truncated at 0.4 * the length from point C to point MC in flatter areas).

Given an estimate of vertical error of the elevation data, RMSEh, knowledge of the lo-
cal ground slope can be used to develop a modified percentage estimate for offset for each
interval and subsequent sub-intervals discovered during the process of geometric replica-
tion.

The tendency for errors in x and y to predict the magnitude of error in height is well-
documented [8,20,24]. For a constant slope, a given error in the horizontal produces a cor-
related vertical offset. That is, as horizontal displacement increases, the vertical displace-
ment in height increases proportionally according to the slope of the land surface [24, p.33]
(see Figure 12). As Imhof noted, the uncertainties inherent in repeated measures of the
horizontal component of a contour line position reveal what he termed the “zone of mean
positional error in contour lines” (MPE) and the arithmetic mean of this distribution is “the
most probable location of the contour line” [24, p.33], Imhof’s Figure 18.

For our purposes, we need to invert Imhof’s problem statement. Typically, in his dis-
cussion of the problem, the horizontal error is known and, from this, the vertical error in
height is calculated. In our case, we have an estimate of the vertical error in height in the
original survey data and need to calculate the allowable horizontal extent of smoothing
associated with this error. This can be done based on the surface slope along the medial
axis (see Figures 12 and 13).

As an example, a slope of 0.05 (5%), given our data with an RMSEh = 0.122 meters,
produces an allowable x and y offset of 0.122/0.05 = 2.44 meters (see the equation in Figure
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Figure 12: Allowable horizontal offset of displacement for selected slope values. The verti-
cal error for the data test is constant at +/- 0.122 meters. Values of alpha (α) are expressed
in degrees followed by their corresponding value expressed in decimal percent (“rise over
run”). As the slope decreases, there is, within the limits of the interval midpoints, greater
freedom to displace the contour in x and y to achieve smoothness.

13). A slope of 0.01 (1%) produces a more relaxed potential offset of 0.122 / 0.01 = 12.2
meters. Conversely, a percent slope of 1.80 (approximately 80 degrees) produces an offset
of only 0.067 meters. In steeper slopes, the smoothed line should lie closer to the original
point C. On the other hand, a slope approaching zero implies an infinite allowable x and
y offset for the smoothed contour line which we truncate at the maximum allowed tension
value of 0.4 (see Equation 11).

A slope approaching 90 degrees implies contours stacked upon one another and com-
plete coalescence. Coalescence of contours can indicate problems with the scale and accu-
racy continuum and may need to be addressed by scale change, contour interval change,
or both. Alternatively, perhaps, some allowances should be made for the special display
of non-intersecting coalesced contours, perhaps as a discontinuous feature type (e.g., a cliff, a
retaining wall, or a cut bank). Subtle vertical discontinuities such as this occur in all types of
terrain and more frequently than is usually thought. An argument can be made that these
features be automatically derived and symbolized in our displays and thereby extend the
applicability of a given contour interval that fits most of the terrain.

The allowable offset value is used to adjust the tension value TF by the minimum of
either the ratio xyOffset/Length ∗ 0.4 or 0.4 itself when the predicted offset exceeds the
tension factor for length:
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Figure 13: Local slope predicts allowable x, y offset.

TF = MIN [(xyOffset/Length) ∗ 0.4, 0.4] (12)

where

• xyOffset is the potential limit of departure of a smoothed line from the NICL contour
in meters along the medial axis computed as

• xyOffset = RMSEh ∗ Slope%−1 = RMSEh/Slope%

– TF = the x, y offset percentage or tension, default value = 0.4
– Slope% = the percentage slope as a decimal value (rise over run)
– RMSEh = the vertical error associated with the DEM in meters

• Length =
√

(Cx˘Mx)2 + (Cy˘My)2, the distance of point C to M .
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3.6 Insertion threshold based on half the contour line thickness

The process of subdividing the original interval, and displacing the center point in each
resulting sub-interval (that is, with points D to D′ and E to E′, etc. in Figure 11), repeats
as long as the respective medial axis distance is greater than half the contour line thickness
(0.6 meters for the data and scale used here).

The value of one-half the contour line thickness was derived from the well-known sam-
pling theorem which recommends a minimal interval of half the signal bandwidth to ad-
equately sample a signal [48]. Applying the concept of signal bandwidth to contour lines,
the symbolized line width of 0.2 mm at a scale of 1:6,000 is 1.2 meters. This means that we
should insert a new prospective smoothed point into the line if the medial distance between
points C and C ′ for any interval (or additional sub-intervals) is less than 0.6 meters. Using
this value, we expect to add just enough points in subsequent sub-intervals to ensure the
smooth appearance of the output contours at 1:6,000 scale. Here we are adding points that
exceed an insertion threshold making the line incrementally smoother—the logical com-
plement to Douglas-Peucker thinning.

3.7 An illustration of smoothing in an interval

To briefly recap, the original NICL Baseline data is shown in Figure 14 superimposed over
the LiDAR DEM. The NICL Baseline is created with small closed contours removed. This
original, numerically precise interpolation is the ultimate source of a centerline of the con-
tour as defined by Imhof [24]. (See p. 33 and Imhof’s Figure 18). The vertices found in
these centerlines are so dense that large scales such as 1:500 to 1:1000 are needed to be able
to distinguish the individual vertices in point displays.

The data is then thinned at TT = 1.2 meters and smoothed using the LACA method to
produce the symmetrically smoothed contours visible in Figure 15. A randomly selected
area involving a small turnback along Polyline 1233 has been selected to illustrate details
in the smoothing process and is shown in Figures 16 and 17. Figure 16 was generated by
clipping actual smoothed interval results viewed at a very large working scale in QGIS
3.16. Annotations were added to allow comparison with earlier figures, such as Figures 10
and 11.

4 Results of experiments

Section 4 evaluates the evidence that we have retained the accuracy of the original contour
data (Section 4.1) and, at the same time, reduced the angularity and thus improved the
smoothness of the lines (Section 4.2). For a general comparison, relative numbers of points
for NICL Baseline, NICL Thin 1.2m, and LACA 6K Smooth are given in Table 1. NICL Thin
1.2m represents a dramatic reduction in the number of points compared to the NICL Base-
line, while the reconstituted, smoothed lines in LACA 6K Smooth require only one-third the
number of the original points.

There are quite a number of tests and comparisons performed on the various data sets
used here. Refer to Tables A-1, A-2, and A-3 in Appendix A for the meanings of data set
labels, explanatory notes, and criteria for acceptance of the tests conducted.

JOSIS, Number 28 (2024), pp. 3–73



36 MILLER

Figure 14: Original DEM with original NICL Baselines at 1-meter contour interval. Note
the many small closed contours and irregular turnbacks with the blurring of the line as
turnbacks in the contour lines are collapsed upon themselves or one another in the display.
As shown here, the contour image is displayed at a scale of 1:6200 using the NICL Baseline
contours before the culling of small areas and before thinning prior to smoothing.

4.1 Horizontal accuracy assessments

The first question to be answered involves the accuracy of the line placement: have we
smoothed to an extent that violates the accuracy inherent in the data? To address this, we
rely on two test methods simply denoted as Method 1 and Method 2 in Table A-2.
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Figure 15: Symmetrically-smoothed contours for LACA 6K Smooth. Compare lines to those
in Figure 14. The display scale is 1:6200.

First, from past work assessing line placement in GIS, we use the concept of error bands
and counts of points lying within an epsilon distance of the NICL Baseline contours [19, 42,
43]. This is Method 1 of the Horizontal Accuracy Tests.

Second, to strengthen our argument regarding x and y accuracy, a new test method is
proposed in Section 4.1.2. The method is specific to contours and infers horizontal accuracy
from the vertical displacement of smoothed contour vertices compared to height estimates
from the original DEM (see Section 2.5.3, Figure 3, and Tests 11-15 in Table A-2). This is
Method 2 of the Horizontal Accuracy tests.
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Figure 16: NICL Baseline, NICL Thin 1.2m, and LACA 6K Smooth results. The dashed line
represents the NICL Baseline; the thin black line represents the NICL Thin 1.2m data; and the
solid black line with white vertices represents the results of the LACA 6K Smooth method.

Data Set Number Vertices Percentage
NICL Baseline Contours 69,712 100.00%
NICL Thin 1.2m 7,134 10.24%
LACA 6K Smooth 22,790 32.69%

Table 1: Number of vertices in original, thinned, and smoothed data sets.

4.1.1 Horizontal accuracy tests method 1: buffer zone tests

The primary test for this method involves a comparison of the horizontal accuracy about
the original NICL lines (NICL Buffers at 0.6 and 1.2 meters) with the thinned and smoothed
results from LACA 6K Smooth [1, p.429]. See Tests 1 and 2 in Table A-2.
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Figure 17: Iterative geometric replication in a selected interval: A vertex C’ was moved
along CMC at a TF of 0.237 in the initial call to the LACA smoothing. Two vertices (D
and E) are added to the interval ABC. The new sub-intervals AC’D and BC’E are then
recursively evaluated resulting in new smooth points at D’ and E’. The process repeats
until the IT of 0.6 (measured as D’ to MD and E’ to ME) is not exceeded.

Specifically, we used the QGIS 3.16 tool “Count Points in Polygon” to count the number
of smooth vertices inside the two buffer zones [1, p.978]. The results are shown in Table
2. There were 22,790 vertices in the LACA 6K Smooth data set. The overwhelming majority
fell within the outer buffer of 1.2 meters from the NICL (22,643) leaving 147 anomalous
points that managed to fall outside the bounds of both buffers. This is a 99.36% success
rate. However, it falls short of the stated goal of 3 sigma or 99.73% introduced in section
2.5.1 by 0.37% and should be qualified.

In Table 2, the observed percentage of LACA 6K Smooth points within 0.6 meters of
the line is 88.44%. This comfortably exceeds the expected sigma of 86.64% introduced in
Section 2.5.1 meaning that this level of the test for accuracy passed without qualification.

In addition to tests of LACA 6K Smooth compared to the NICL Buffers, this section also
includes the results of accuracy for tests of other smoothing methods discussed here. This
includes B-Spline Snakes from a QGIS generalize function (Tests 3 and 4); our implemen-
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Test Reference Buffer Evaluated Method Points
Inside

Points
Outside

Total
Points Pct In Ranked

Sigma
9 NICL Buffer 0.6 m LACA 50K Smoothing 139 470 609 0.2282 0.29
10 NICL Buffer 1.2 m LACA 50K Smoothing 243 366 609 0.3990 0.52
3 NICL Buffer 0.6 m B-Spline Snakes Smoothing 2,924 4,210 7,134 0.4099 0.54
4 NICL Buffer 1.2 m B-Spline Snakes Smoothing 4,900 2,234 7,134 0.6869 1.01
5 NICL Buffer 0.6 m 5X Surface Smoothing 43,129 11,081 54,210 0.7956 1.27
6 NICL Buffer 1.2 m 5X Surface Smoothing 52,851 1359 54,210 0.9749 2.24
7 NICL Buffer 0.6 m Kettunen FPDEMS 51,923 5,323 57,246 0.9070 1.68**
8 NICL Buffer 1.2 m Kettunen FPDEMS 56,441 805 57,246 0.9859 2.46
1 NICL Buffer 0.6 m LACA 6K Smoothing 20,157 2633 22,790 0.8845 1.58**
2 NICL Buffer 1.2 m LACA 6K Smoothing 22,643 147 22,790 0.9935 2.73

NICL Baseline — 69,524 188* 69,712 0.9973 3.00

Table 2: Results for horizontal accuracy (Method 1): percentage of smoothed points inside
NICL Buffer Zones.
* Allowable number of error points at 3 Sigma.
** Exceeds 1.5 Sigma or 86.64% of points for 0.6-meter buffers.

tation and test of generic smoothing at five iterations (5X Smooth—Tests 5 and 6); and, our
implementation and test of the Kettunen feature preserving method (Kettunen FPDEMS—
Tests 7 and 8).

All the tests 1–8 were conducted at a 1:6,000 scale and all were evaluated against the
NICL centerlines using the standard 0.6- and 1.2-meter buffers described earlier. None of
the methods except LACA 6K Smooth come close to the goal of 3.0 sigma for the 1.2-meter
buffer, so it seems prudent to rely most on the 0.6-meter buffer tests as a primary means to
distinguish our results.

From the results in Table 2, we conclude that any method with a sigma value greater
than 1.5 for a buffer of 0.6 meters is significant. Only two methods meet this criterion, the
Kettunen FPDMS (1.68 sigma) and the LACA 6K Smooth (1.58 sigma) methods. While the
advantage of the Kettunen result is somewhat surprising, this method does show promise
for smoothing as shown in alternative tests in Section 4.2 dealing with contour smoothness.

We must also mention that, as an alternative to considering the 0.6-meter buffer alone,
we experimented with averaging the sigma for both 0.6- and 1.2-meter buffers for the Ket-
tunen FPDEMS and LACA 6K Smooth methods. Considering both buffers, the Kettunen
method averaged (1.68 + 2.46) / 2 = 2.070 sigma while the LACA averaged (1.58 + 2.73) / 2
= 2.155 sigma. This is considered an indication that the LACA method excels on average.

Finally, to complete our discussion of the Method 1 tests in Table 2, we must also men-
tion that a test of the LACA method was conducted at a 1:50,000 scale as in Tests 9 and 10
(see LACA 50K Smooth in Table A-2). As described in Table A-1, this data set was developed
using a thinning tolerance TT = 10 meters and an insertion threshold IT = 5 meters, both
derived using Equation 1 and the scale of 1:50,000. A contour interval of 5 meters was used
for this test, a somewhat tight contour interval for this scale but necessary to show variation
over the test area.

As expected, LACA Smooth 50K varies considerably from the NICL Baseline centerlines,
the natural result of a dramatic scale change. As such, it lacks the vertical accuracy origi-
nally attributed to the data: generalized results should have an error statement and a qual-
ified RMSEh. In Section 4.2.4, we present 1:50,000 scale test results and suggest a method
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to amend the base error statement (i.e., RMSEh = 0.122) to reflect the impact on accuracy
that results from smoothing with scale changes (i.e., a revised RMSE of 0.261).

4.1.2 Accuracy tests method 2: x, y accuracy estimated from vertical deviations

In addition to the buffer zone tests of Method 1 in the previous section, we offer a second
method of horizontal accuracy verification described earlier in Section 2.5.3. That is, by
developing vertical deviations of the height estimates along the smoothed centerline using
the DEM. This test is based on the premise that smoothed points lying close in x and y to the
NICL Baseline likely agree in height estimated from the underlying DEM owing to the fact
that the NICL Baseline centerlines precisely match the DEM. By using the DEM to estimate
the true elevation at an x and y smoothed point having a nominal contour elevation, we can
develop an indirect measure of how closely the lines from a given smoothing method are
correlated in x and y to the standard NICL Baseline (see the method portrayed in Figure 3).

For this evaluation, we employ hypothesis testing using the Z statistic and probability
level for our tests [55]. This is a widely used statistical technique that, in our case, allows
us to compute the likelihood that our smoothed data for any given data set adheres closely
enough to the NICL Baseline data.

Hypothesis testing for two groups is based on a null and an alternative hypothesis
[55]. The null hypothesis for this test is that the mean deviations in heights for a tested
smoothing method are not significantly different from the mean deviations of the NICL
Baseline. If we cannot reject the null hypothesis, then we may conclude that the lines are
indistinguishable in terms of proximity to one another.

Formally stated the null hypothesis is: H0 : µSMOOTH = µNICL.
The alternative hypothesis is a two-tailed test stating that we expect the mean of the

smoothed data to be either significantly higher or lower than that of the NICL Baseline
data. We set a standard for the probability (P) that we have reached the right conclusion
with regard to the null hypothesis at 0.05. HA : µSMOOTH ̸= µNICL at P = 0.05.

If we reject the null hypothesis, the mean deviation for the smoothing method in ques-
tion is different enough from that of the NICL Baseline to conclude that the smoothed lines
violate the accuracy of the original data. Refer to Table 3.

Smoothing Method Average
Deviation SD N Z-Test

Score P-Value

LACA 50K Smooth 0.04423 0.261 609 4.1817 0.0000289*
B-Spline Snakes 0.01291 0.176 7,134 6.0532 0.0000000134*
5X Smoothing -0.01000 0.470 54,210 -4.8262 0.0023347*
Kettunen FPDEMS -0.00229 0.340 57,246 -1.5346 0.1248716
LACA 6K Smooth 0.00017 0.235 22,790 0.1042 0.9169800
NICL Baseline 0.00000 0.122 69,712 — P = 0.05

Table 3: Results for horizontal accuracy (Method 2): test of significance from height devia-
tion estimates.
* Reject the Null hypothesis: the lines differ significantly from NICL Baseline in x and y.

While the range for average deviations in Table 3 appears small, the values differ by
orders of magnitude. The test involves consideration of the number of vertices in each
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group and the standard deviations of the groups as well. The relative ratio of these values
determines a Z-Test score as follows:

ZTest =
AvgNICL −AvgSMOOTH√

SDNICL
2

NNICL
+ SDSMOOTH

2

NSMOOTH

(13)

where

• AvgNICL = average height deviation of the NICL Baseline (zero for the baseline—the
NICL values match the DEM perfectly)

• AvgSMOOTH = average height deviation for the smoothing method in question
• SDNICL = standard deviation of the original NICL angles
• SDSMOOTH = standard deviation of the smoothing method in question
• NNICL = number of points in the original NICL data
• NSMOOTH = number of points in the smoothing method in question

From Table 3, we reject the null hypothesis that the means are equal for the first three
methods. We conclude that the indicated methods have introduced significant changes to
the x and y location of the smoothed lines based on the inference from height displacement.
Conversely, we accept the null hypothesis for the Kettunen FPDEMS method and the LACA
6K Smooth method meaning that these two are equivalent to the NICL Baseline results: they
are close enough to be matched to the NICL Baseline in x and y. Note that the P-value for
LACA 6K Smooth is particularly high in relation to the other methods.

Finally, we present graphic evidence supporting Table 3 results in Figure 18. The order
of the ranked results in the figure supports the numbers from the Table. Also particularly
noteworthy, the LACA 6K Smooth results consistently adhere to the turnbacks in the line.
Kettunen FPDEMS remains close to the LACA 6K Smooth method, while 5X Smoothing and,
to a greater extent, B-Spline Snakes, retain only remnants of the turnback shapes.

4.2 Tests of contour smoothness

Having evaluated the horizontal accuracy of the smoothed lines and identified Kettunen
FPDEMS and LACA 6K Smooth as those methods that retain accuracy, we now turn our
attention to the smoothness of the lines. For completeness, we again test all smoothing
methods, even those that failed the accuracy tests. Specifically, we will test whether or not
the smoothing methods have reduced the angularity and thus improved the smoothness of
the lines.

In Section 2.5, we described proposed tests of the enclosed angle which we will use as
a basic metric of line angularity. From these metrics, we develop basic statistics including
the mean angle and the standard deviation of the angles of the lines. The statistics from
these measures can then be used in hypothesis testing similar to the methods we employed
in the previous section on x and y accuracy testing.

We illustrate the tests on smoothing by walking through the comparison of the LACA
6K Smooth results to that of the NICL Baseline. In our case, hypothesis testing allows us
to compute the likelihood that our “smoothing treatment” of the thinned data produced
smoother contours than can be found in the original NICL data. Hypothesis testing for
two groups is again based on a null and an alternative hypothesis. The null hypothesis
is that the angularity is not significantly different between the two datasets and that the
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Figure 18: Composite relationships of smoothing methods at 1:6,000 scale. A representative
sample of the relation between various smoothing methods is examined here with the NICL
Buffer 0.6m as a backdrop. Notice the order of the lines, particularly as they fan out at
turnbacks. This is a consistent pattern throughout the area: LACA 6K lies closest to the
buffer centerline followed by Kettunen FPDEMS then 5X Smoothing and B-Spline Snakes.

mean angle for the LACA 6K Smooth data is not significantly different from that of the NICL
Baseline after our smoothing.

Formally stated, the null hypothesis for Test 16 is: H0 : µLACA = µNICL.
If we cannot reject the Null hypothesis, then we must conclude that the lines are indis-

tinguishable in terms of angularity; that we have not significantly reduced angularity and
thus improved smoothness using our method.

4.2.1 Initial smoothing tests for LACA 6K Smooth versus NICL Baseline

In Table 4, we present our analysis of the degree to which the LACA 6K Smooth contours
have reduced the angularity of the NICL Baseline contours, that the LACA contours are
significantly less angular than the NICL data. In this Table, we are comparing the original
NICL (less the insignificant small polygons), which is composed of densely threaded con-
tour vertices, to the thinned and then reconstituted smooth LACA lines. Again, the basic
criterion for the comparison is the result of computing the enclosed angle of each internal
vertex in each three-point sequence in the lines (refer to Section 2.5 and Figure 4). These
comparisons form the individual observations that are cumulatively tested for significance
here.

The alternative hypothesis is a unidirectional (one-tailed) test stating that we expect the
mean of the LACA angles to be closer to 180 degrees than that of the NICL data. HA :
µLACA > µNICL at P = 0.05.
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Statistic NICL Baseline LACA 6K Smooth
Average 179.7697 179.9109
Min 0.0000 8.8160
Max 358.1473 359.3293
SD 20.1579 25.8634
N 69712 22698
Kurtosis 14.7578 3.8037
Skewness -0.2358 0.0243
Z-Test -0.7516
P-Level 0.2290*
Sig Level 0.05

Table 4: Test 16: test of mean angles—NICL Baseline versus LACA 6K Smooth.
* Since P-Level exceeds Sig Level, we cannot reject the null hypothesis meaning there is
essentially no difference between the means of the two datasets. Both datasets are equally
smooth.

Specifically, we expect that our smoothing has had an effect and that the mean value for
the smoothed LACA angles is closer to 180 degrees than the NICL value. As before, the test
involves consideration of the number of vertices in each group and the standard deviations
of the groups as well. We determine a Z-Test score as before and specifically as follows:

ZTest =
AvgNICL −AvgLACA√

SDNICL
2

NNICL
+ SDLACA

2

NLACA

(14)

where

• AvgNICL = average of the original NICL Baseline angles (no thinning applied)
• AvgLACA = average of the LACA 6K Smooth angles
• SDNICL = standard deviation of the NICL Baseline angles
• SDLACA = standard deviation of the LACA 6K Smooth angles
• NNICL = number of enclosed angles in the NICL Baseline data
• NLACA = number of enclosed angles in the LACA 6K Smooth data

The Z-Test value of -0.7516 from Table 4 renders a probability level of 0.2290 which is
greater than the significance level chosen of 0.05. From Test 16, we must conclude that there
is no significant difference between the two means, and we are unable to prove that the LACA
6K Smooth has meaningfully reduced angularity in the original NICL data.

4.2.2 Test of LACA 6K Smooth Versus NICL Thin 0.5m data

Upon closer examination of the distribution of the NICL Baseline data, however, the extreme
leptokurtic nature of the NICL data stood out. By a ratio of 4:1, angles in two bins ranging
from 177.5 to 182.5 degrees occurred more frequently than all other adjacent bins (roughly
a combined 31,000 of 69,000 observations– see Figure 5b in Section 2.5).

The explanation we offer for this finding is that the original NICL Baseline data are
oversampled. The threading process described earlier interpolates a point at each neigh-
borhood edge crossing regardless of whether or not an actual inflection in the angle of the
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line exists. Normally, this is a length of less than one meter in x and y spacing between ver-
tices. Many of the original points interpolated along neighborhood edges are completely
colinear and thus redundant. The result is an over-representation of angles near 180 de-
grees (see Figure 5b in Section 2.5).

To test this theory, we applied minimal thinning to the original NICL data and repeated
Test 16 as Test 17. The essential question to be answered before committing to this approach
was what value of TT should we use to perform this thinning? For general guidance, the
value selected for thinning should be less than the insertion tolerances used to create the
LACA 6K Smooth data: we do not want to risk undersampling the NICL Baseline data. The
value 0.6 meters was used for the insertion of a smoothed LACA point. This suggested
something slightly less than 0.6 meters, so a minimal value of 0.5 meters was selected and
applied to the NICL Baseline data rendering a new thinned dataset NICL Thin 0.5m.

A comparative view of the NICL Thin 0.5m and NICL Baseline vertices is shown in Fig-
ure 19. We concluded that the NICL Thin 0.5m is a truer picture of the angularity in the data
that was masked in the oversampled, unthinned NICL Baseline data. We also concluded
that a new test, Test 17, was in order using the NICL Thin 0.5m data. See the results for Test
17 in Table 5.

Figure 19: NICL Thin 0.5m: deriving an estimate of underlying angularity. The thin black
line and retained green vertices are the NICL Baseline after 0.5m thinning (NICL Thin 0.5m).
The red band is the 0.6m buffer. The scale of the display is 1:600.

In the re-test shown in Table 5, the Z-test score of -2.2458 yields a P-value of 0.0247, a
value less than the significance level of P = 0.05. In this case, we can reject the null hypothe-
sis that the means are equivalent. We conclude that there is a significant difference between the
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Statistic NICL Thin 0.5m LACA 6K Smooth
Average 179.1676 179.9109
Min 0.2923 8.8160
Max 359.2856 359.3293
SD 37.9049 25.8634
N 17942 22698
Kurtosis 2.2858 3.8037
Skewness -0.0845 0.0243
Z-Test -2.2458
P-Level 0.0247*
Sig Level 0.05

Table 5: Test of mean angles: Test 17—NICL Thin 0.5m and LACA 6K Smooth.
* P-value is significant at the 0.05 level.

two means, specifically that LACA 6K Smooth data has a meaningfully larger average angle
once the initial extreme density of the original line is considered. By judiciously thinning
colinear vertices, we have removed many of the spurious angles occurring very near 180
degrees evident in the original NICL Baseline data.

More specifically, the mean value of the LACA 6K Smooth data is closer to 180 degrees
and exhibits a much smaller variation about the mean. Again, we interpret this as an indi-
cation that the LACA smoothing has reduced the angularity inherent in the original NICL
data and has generated smoother lines.

The table also supports the contention that, for a comparatively modest increase be-
tween the number of points in the thinned NICL data and the smoothed data, there is a
sizable increase in the quality of the displays (see Table 1). The smoothing about the medial
axis seems to insert the right points at the right place producing a better result. Compare
Figures 12 and 13 and Figures 20a and 20b.

4.2.3 Tests of smoothness for other smoothing methods

Smoothing tests were also applied to the other methods of smoothing. There were two sets
of tests performed with results from set one shown in Table 6 and the second set shown in
Table 7.

The first set (Tests 18, 20, and 22 in Table A-2 in Appendix A) compared each of the
smoothing methods B-Spline Snakes, 5X Smoothing, and Kettunen FPDEMS to the same data
used as a reference for the LACA 6K Smooth in Test 17. That is, the tests were intended to
determine whether or not the smoothing methods showed less angularity and were thus
smoother than the reference data in NICL Thin 0.5m. We believe this latter data set to be
representative of the true degree of angularity in the NICL Baseline From Table 6, all the
methods produce smoother results than the NICL Thin 0.5m dataset.

The second set of tests (19, 21, and 23) were conducted to see if there were differences
in the degree of smoothness between the three alternative smoothing methods listed above
and the LACA 6K Smooth method. We want to be able to answer the question of whether
or not the smoothness produced by the LACA 6K Smooth method is as smooth as any of the
other methods. As a result, the LACA 6K Smooth is used as the reference data set. We found
no difference in the degree of smoothness for any of the three methods.

www.josis.org

http://www.josis.org


LOCALLY ADJUSTED CURVE APPROXIMATION SMOOTHING OF CONTOUR POLYLINES 47

(a) NICL Baseline with LACA 6K Smoothed.

(b) LACA 6K Smooth contours alone.

Figure 20: The scale of the display is 1:600.
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Test # 18 20 22 Reference Dataset
Statistic B-Spline Snakes 5X Smoothing Kettunen FPDEMS NICL Thin 0.5m
Average 179.9583 180.0668 180.2606 179.1676
Min 0 54.9808 13.3959 0.2923
Max 345.2714 324.1131 355.0916 359.2856
SD 18.6127 7.7315 12.3048 37.9049
N 6950 53945 56930 17942
Z-Test 2.1936 3.1559 3.7963
P-Value 0.02826* 0.0016* 0.000147*
Sig-Level 0.05 0.05 0.05

Table 6: Tests of smoothness for three methods using NICL Thin 0.5m as reference.
* P-Value is significant at the 0.05 level. In each test, we can reject the null hypothesis
that there is no difference in the angularity between each successive smooth test and the
reference data set. All the tested methods produce smoother results than the NICL Thin
0.5m reference data.

Test # 19 21 23 Reference Dataset
Statistic B-Spline Snakes 5X Smoothing Kettunen FPDEMS LACA 6K Smooth
Average 179.9583 180.0668 180.2606 179.9109
Min 0 54.9808 13.3959 8.8160
Max 345.2714 324.1131 355.0916 359.3293
SD 18.6127 7.7315 12.3048 25.8634
N 6950 53945 56930 22698
Z-Test 0.1682 0.8914 1.9504
P-Value 0.8664 0.3727 0.0511
Sig-Level 0.05 0.05 0.05

Table 7: Tests of smoothness for three methods using LACA 6K Smooth as reference.
The P-Value is not significant at the 0.05 level for any test. In each test, we must accept
the Null hypothesis that there is no difference in the angularity between each successive
smooth test and the reference LACA 6K Smooth data set. Note, however, that Kettunen
FPDEMS came very close to being smoother than LACA 6K Smooth in Test 23.

We had expected that either the B-Spline Snakes or the 5X Smoothing may be signif-
icantly different from the LACA 6K Smooth dataset indicating that these datasets were
overly-smoothed. We did not find any such indication.

4.2.4 An experiment with LACA Smoothing at 1:50,000 scale

The proposed method is subject to concerns that it can cause crossing contours or that it will
cause an unacceptable number of coalesced contours at significantly reduced scales. To test
these possibilities, an additional smoothing experiment was conducted using an interval
of 5 meters and at a 1:50,000 scale. To review, the tolerance and thresholds for thinning
and insertion must be recalculated when scale changes are needed. From Equation 1, the
thinning tolerance and insertion threshold for the 1:50,000 scale are computed as

TT = 50, 000 ∗ 0.2/1000 = 10000/1000 = 10meters
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and
IT = TT ∗ 0.5 = 5meters

4.2.5 An amended accuracy statement for 1:50,000 scale results

After each change to the tolerance for minimal thinning, only the significant points deter-
mined by thinning and smoothing remain. We feel that a scale change such as this neces-
sitates a revision of our accuracy statement: smoothing and displacing the lines in x and
y has implications for the implied height accuracy of the data. Even generalized contours
have an accuracy requirement.

As an amended statement of RMSEh, we propose the use of the methods described
in Section 4.1.2. There, we estimated the vertical displacement of the relocated smoothed
points by projecting the x and y of the smoothed points onto the original DEM. These
variances in height are a revised statement of vertical accuracy in the data.

From Table 3, the standard deviation for the LACA 50K Smooth result is 0.261 meters.
Compared to the original DEM RMSEh of 0.122, this is a substantial increase. The 95%
confidence interval for the smooth data is 1.96 * 0.261 = 0.512 meters. Considering the
magnitude of scale change, however, this is actually a benign result when compared to the
accuracy of the other methods (see Table 3). The LACA adherence of the smoothed line to
the original pays dividends when affecting a scale change.

In general, however, the LACA method fails to produce satisfactory results for the
1:50,000 scale display. While the method works well over most of the test area, it fails
in at least two prominent, elongated turnbacks shown in areas A and B in Figures 21 and
22. The muted orange buffer in Figure 22 is 10 meters in width on the ground (i.e., 0.2 mm
or a line thickness at 1:50,000 scale). The overlapping, self-intersecting buffer lines repre-
sent self-coalescing sections of the lines. A cartographer would likely further simplify the
problem areas by snipping the lines along segments ab, cd, and ef in Figure 22.

The presence of objectionable coalesced sections in the 1:50,000-scale experiment re-
quires a closer examination. For details, see the proposed algorithm and data structures in
Appendices B and C.

4.3 An experiment with a one-half meter contour interval

At the 1-meter interval used in our LACA 6K Smooth tests, no crossing contours were ob-
served. However, we know that the proposed method as implemented can potentially cre-
ate such occurrences. In order to stress-test the possibility of crossings, we experimented
with a denser contour interval of 0.5 meter. The RMSEh accuracy of our survey data
supports such an interval per the guidance of Flood [2].

SCI = AccuracyH/0.5958 (15)

where SCI is Supportable Contour Interval and AccuracyH = 1.96 ∗RMSEh.
Using the error values from the study: SCI = 1.96 ∗ RMSEh/0.5958 = 1.96 ∗

0.122/0.5958 = minimum 0.4020-meter interval. Since 0.5 > 0.4020, we are safe to use a
contour interval of 0.5 meters for this test.

The results of this experiment are shown in Figure 23 which closely examines areas of
densely spaced contours in the test area. No crossing contours were observed. Note that
our method still has the liability to cause crossing contours given the right combination of
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Figure 21: Comparison of the LACA 50K Smooth to the NICL Baseline. The red line represents
the 5-meter contour lines for the 1:50,000 scale display (LACA 50K Smooth). The black lines
represent the NICL Baseline at a 1-meter interval. The scale of the main display is 1:6,000.
The blue circles represent areas of possible coalescence and the smaller figure is the image
at 1:50,000 scale. In the smaller image, the lines are coalesced, particularly the narrow
turnbacks at A and B.

unfortunate geometric circumstances, but our dynamic calculation of a smaller smoothing
displacement in areas of steeper slopes ameliorates this likelihood.

4.4 Notes on smoothed contour line symmetry

Section 2.5.5 described the proposed methods of testing our LACA Smooth 6K results for
symmetry: the state of having matched vertices falling equally about the medial axis of an
interval in the smoothed contour line. While contour lines are arguably irregular by defini-
tion (we are dealing with symmetry of asymmetric shapes), the method of testing described
in section 2.5.5 proposed normalized measures of symmetry. That is, we use the relative
percentage of angles or relative percentage of projected distances along the original lines to
assess symmetry using regression analysis (see Figures 6 and 7).
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Figure 22: Enlarged view of coalesced sections of a 1:50,000 scale line. The detailed purple
lines represent the NICL Baseline, the thin black line represents the LACA 50K Smooth recon-
stituted using an IT = 5 meters, and the light orange buffer represents the ground distance
of the smoothed line thickness at 1:50,000 scale.

The accepted method of evaluating the significance of a regression analysis is hypothe-
sis testing using a t-test statistic (see the test description in Table A-3). The null hypothesis
for the three regression tests described here assumes that there is no linear relation between
the two variables being compared. That is, that the slope of the line approximating points
in a scattergram as seen in Figures 24–26 equals 0 and is a horizontal line drawn through
the scattered points at a constant mean y-value.

The alternative to the null hypothesis is that a linear relationhip exists between the
variables. More exactly for our case, we expect that the slope of the line approaches 1.0 or
that the dependent variable y (i.e., the next angle equals the independent variable or x (i.e.,
previous angle) in our scattergram. A perfectly matched set of observations of corresponding
angles or projected distances for vertices in a line interval can be plotted on an x and y axis
as a straight line with the equation y = x (see the dashed red line in Figures 24). This is
the identity line and is considered to be a condition of perfect symmetry for corresponding
points on either side of the angle bisector.

In Figure 24, the observed relationship between previous and next angles is given by y
= 0.5981x + 0.201. This is the regression line. The slope of the line is positive: as the previous
angle increases, there is a moderate increase in the corresponding next angle. However,
it is far from a perfect relationship. The slope of the line is 0.5981 compared to 1.0, the
slope of the identity line. The regression line, even after setting the y- intercept to 0 and
forcing the line to match at the onset with the identity line (see the equation y = 0.9273x
in Figure 24), deviates from the ideal. The strength of the relationship is given by the R2

term (the coefficient of determination or the amount of variation explained by the previous
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Figure 23: LACA 6K Smooth contours at one-half meter contour interval. A 0.5-meter con-
tour interval in steep areas shows no crossing contours despite the high potential for such
occurrences.

angle as a predictor of next angle) is a modest 0.3598. The coefficient of determination
must always be evaluated in an application context and here we are dealing in inexactitude
with a phenomenon that is the epitome of irregularity. In spite of the vagaries of the line
geometry, however, we expected a better fit.

Despite the noted weaknesses of the coefficent of determination, a statistical test of sig-
nificance of the relation revealed that it is different from 0; that a weak linear relationship
exists (see Table 8). The slope of the line (0.5981) is much different from the ideal value of
1.0 and thus analysis of symmetry by angles is considered a weak relation and we look to
an alternative test method for better results.

Statistic Value
R2 0.3598
n 4216
Slope 0.5981
Y-Intercept 0.2010
t-value 48.6659
p-value 0*

Table 8: Test of significance for relative angles.
* The p-value is 0 to 8 significant digits and is less than the significance level of 0.05. We
can reject the null hypothesis: a weak linear relation exists.

The second method of symmetry analysis is shown in Figure 25. It was obtained by
examining the relationship of previous to next relative distance by projecting the smoothed
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Figure 24: Symmetry measured by the angle method.

points from LACA Smooth 6K onto the original NICL Thin 1.2m bounding lines. See the
explanaton of the concept of relative position and projected distance in Figure ??. As with
angles, the intervals of the line provide the basic unit of analysis and the projected distance
percentage falls with the range of 0 to 1. In general, this method offers more encouragement
than provided by the assessment of angles.

The coefficent of determination for this method is a fairly strong 0.7858. However, as
shown in Figure 25, there is an unusual concentration of points in the scattergram near
0.4. Some 42% of the original points fall within the range 0.4 to 0.6.. The value of 0.4 is
the precise value used for a default tension factor, TF , and this concentration of points
undoubtedly artificially boosts the coefficient of determination. To avoid this problem,
and to develop what we believe to be a truer picture of the relationship, the limits for
analysis were set at 0 to 0.4 excluding the points in the identity range of 0.4 and above (see
Figure 26). Here, the coefficient of determination is reduced to 0.7607, still a moderately
strong relation and one not affected by the concentration of points at 0.4.

The distribution of points in Figure 26 still show a spread of values, but, at its core, the
graphics for the equations developed for this relation show its strength. The identity line
(dashed red line in the figure) closely matches the distinguishable linear point distribution
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Figure 25: Symmetry measured by projected normalized distance. Note the unusual dis-
tribution of points concentrated at 0.4 to 0.5 along both axes. The value for the tension
factor, TF , defaults to a value of 0.4 in relatively flat terrain. The projected distance for
points in this range is roughly the same yielding the concentration of points near 0.4 to 0.5,
particularly strong near 0.40 to 0.43. This biases our result.

evident in Figure 26. The slope of the line (0.8692) is closer to 1, the ideal condition of
symmetry.

A statistical analysis of significance of the relation indicates that it is reasonably strong
(see Table 9). The t-test value (the appropriate test for regression analysis) is effectively
zero: the p-value is less than the alpha level of 0.05 meaning that can reject the null hypoth-
esis that no linear relation exists between our variables. The relative distance of smoothed
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Figure 26: Truncated symmetry measured by projected normalized distance. The dotted
red line is the identity line and a tighter clustering of points is evident about this line.
The solid red line is offered for comparison only and represents the regression line with
y-intercept forced to 0, 0. The green line is the actual regression line which has a y-intercept
very close to 0, 0 and a slope approaching 1. This is a strong relation.

points projected onto the original thinned vertices supports the notion that there is sym-
metry in the intervals and cumulatively in the lines.

5 Summary and conclusions

We believe the method presented here offers a viable alternative to existing methods of
achieving smooth contour results, particularly for larger scale applications. We have pre-
sented a method that is smoother than the source contours, more accurate than other al-
ternative smoothing methods, and is defensibly symmetrical This research has presented a
methodology that is consistent with the precepts of digital cartographic generalization enu-
merated by Weibel and Dutton [62] and McMaster and Shea [38]. Given the performance
of the method, it can be performed interactively and thus meets the criteria for “on-the-fly
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Statistic Value
R2 0.7607
n 4617
Slope 0.8692
Y-Intercept 0.0093
t-value 121.11
p-value 0*

Table 9: Test for significance of relative position along a line.
* The p-value is 0 to 8 significant digits and is less than the significance level of 0.05. We
can reject the null hypothesis: a moderately strong linear relation exists.

generalization” described by Weibel and Burghardt [61]. Specifically, it addressed what is
recognized as the first two steps in generalization, simplification and smoothing.

It does not directly resolve the issue of crossing or self-coalescing sections of a line.
The resolution of such problems requires more advanced structures and qualifies as more
refined forms of generalization. As a start in this direction, a data structure capable of sup-
porting more refined methods of generalization has been presented in Appendix B along
with a basic algorithm for clipping coalesced sections of the lines using contours enmeshed
in a TIN (Appendix C).

In Section 4 of the paper, we demonstrated through our results for the LACA Smooth
6K that we have met the dual criteria of balancing smoothness and accuracy at the larger
test scale of 1:6,000. Testing the method at a reduced scale of 1:50,000, however, showed
errors of self-coalescence that can best be addressed by adapting the LACA method to a
TIN model based on the contour line segments (see Figures B-2 to B-5 in Appendix B).

We also established through our tests that the methods of smoothing examined here can
be ranked in terms of their accuracy and appeal. The LACA 6K Smooth results ranked first
closely followed by the Kettunen FPDEMS. We must acknowledge that feature-preserving
surface smoothing approaches have merit, though they too lose adherence to the original,
most accurate line at turnbacks (see Figure 18). The 5X Smoothing and B-Spline Snakes show
a definite loss of accuracy and significant loss at turnbacks.

There remains further work, however, including the following.

1. We need additional testing on terrain other than the gentle, rolling hills we have
tested in this prototype. For example, testing in steeper terrain within the study
area from the Gettysburg database with a one-meter contour interval should test any
predilection of the method to introduce crossing contours and our use of the local
slope to avoid such problems.

2. We conducted this investigation with an accurate and dense LiDAR DEM, but the
methods used here could be applied to any other DEM regardless of their source. This
work needs to be repeated for other types of DEMs such as the National Elevation
Dataset (NED) at 3- and 10-meter post spacing with scale reductions of 1:10,000 and
1:24,000 and vertical errors of 1.82 and 3.04 meters, respectively [53].

3. Finally, in Appendices B and C, we touched on the potentially benign impacts of
embedding the contours into a topological TIN model to provide a neighborhood
context for operations and to avoid introducing thinning or smoothing errors and
self-coalesced sections of the smoothed lines. We demonstrated how such a model
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might be used in section Appendix B and in pseudocode illustrating an algorithm
to remove self-coalesced sections of lines in Appendix C. Further development and
implementation of this model is needed.

Regarding this last point, we suspect that this underlying representation could be use-
ful in many GIS applications and would support a “contour terrain model” (i.e., a CTM—
contours enmeshed in a TIN model) that could become a third alternative to either DEMs
or conventional TINs alone for terrain modeling in the context of a GIS. The CTM would
be a good vehicle for interactive displays of topography at working scales in support of
analysis.

Given the affinity between contour representations and human perception, this last ob-
servation seems a natural evolutionary step in terrain modeling. It is clear, however, that
this model would require at least two modifications if it is to be successful.

First, we have to intentionally violate the coveted principle of Delaunay triangulation
if the model is to be true to the land surface. Some manipulation of existing triangulation
methods is in order, extending even beyond the normal “constrained” model which honors
feature edges in the triangulation, but does not remove “flat” triangles that occur when all
three vertices of a candidate triangle are from the same contour line or lines of equal eleva-
tion [58]. Importantly, the CTM must include conventions for ordering the lines, vertices
and TIN edges, something missing from TIN models today.

Second, this will also have to include the derivation and inclusion of geomorphic fea-
tures such as drains much like the approach of Gokgoz and Gulgen [17] where the contours
formed the basis for deriving drainage information. This modification is necessary to re-
move flat triangles and improve the fidelity of the terrain model to real landforms in the
surface.

These ideas need to be explored further, both to avoid possible errors in contour
smoothing and for the general utility of a CTM model to GIS applications.
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A A review of devised testing methods

Data Set Label Description

DEM

The unaltered LiDAR DEM was used to generate NICL Baseline and, for
tests 11-14 in Table A-2, estimates of true height at vertices along a
smoothed contour line are compared to the nominal height of the
contour line.

NICL Baseline
The original NICL contours were generated from the unaltered DEM
and applied without thinning or smoothing. Small closed polylines
have been culled.

NICL Thin 1.2m
A contour data set generated from NICL Baseline thinned at tolerance
TT = 1.2 meters. This is input to the process that generates LACA 6K
Smooth and B-Spline Snakes contours.

NICL Buffer 0.6m The 0.6-meter buffer about NICL Baseline centerlines. Used to
determine inside or out for contour x, y accuracy.

NICL Buffer 1.2m The 1.2-meter buffer about NICL Baseline centerlines. Used to
determine inside or out for contour x, y accuracy.

NICL Thin 0.5m
A special selection of the NICL Baseline data thinned at TT = 0.5 m for
Test 17. Used to minimally thin the data to reveal the angularity which
was masked by the oversampled points in the the NICL Baseline.

5X Smoothing
Contours are generated from an intermediate smoothed DEM by
simple averaging with five iterations of smoothing for the original
DEM.

B-Spline Snakes

A contour data set generated by processing NICL Thin 1.2m through a
B-Spline Snakes line generalization function available through QGIS
3.16. The test used default shape parameters (Alpha = 1.0 and Beta =
0.5).

Kettunen FPDEMS

An intelligent, “feature preserving DEM smoothing” (FPDEMS)
method alternately using “heavy” (we used 5X iterations) versus
“light” (1X iteration) smoothed values weighted based on the
topographic position index value at the center point. Kettunen FPDEMS
contours are then generated using a composite intermediate DEM that,
in turn, is derived from two other intermediate DEMs, one based on
heavy smoothing (5X) and the other on light smoothing (1X).

LACA 6K Smooth
The smoothed LACA contours at a 1:6,000 scale were generated by
smoothing NICL Thin 1.2m using a 0.6-meter value for IT . This is our
preferred method of contour smoothing.

LACA 50K Smooth

A smoothed LACA contour data set at 1:50,000 scale was generated
from NICL Baseline using TT = 50,000 * 0.2 /1000 = 10 meters and IT =
5 meters to generate new smoothed points (see Equation 1 in Section
2.4.2.1).This data is intended to demonstrate the applicability of the
LACA method at medium scales.

Table A-1: Data set labels and descriptions.
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Test No. Test Method Data Set Evaluated Reference Data Set
H

or
iz

on
ta

lA
cc

ur
ac

y

M
et

ho
d

1
1 Buffer Pct In LACA 6K Smooth NICL Buffer 0.6m
2 Buffer Pct In LACA 6K Smooth NICL Buffer 1.2m
3 Buffer Pct In B-Spline Snakes NICL Buffer 0.6m
4 Buffer Pct In B-Spline Snakes NICL Buffer 1.2m
5 Buffer Pct In 5X Smoothing NICL Buffer 0.6m
6 Buffer Pct In 5X Smoothing NICL Buffer 1.2m
7 Buffer Pct In Kettunen FPDEMS NICL Buffer 0.6m
8 Buffer Pct In Kettunen FPDEMS NICL NICL Buffer 1.2m
9 Buffer Pct In LACA 50K Smooth NICL Buffer 0.6m
10 Buffer Pct In LACA 50K Smooth NICL Buffer 1.2m

M
et

ho
d

2 11 Hypothesis Testing I LACA 6K Smooth NICL Baseline
12 Hypothesis Testing I B-Spline Snakes NICL Baseline
13 Hypothesis Testing I 5X Smoothing NICL Baseline
14 Hypothesis Testing I Kettunen FPDEMS NICL Baseline
15 Hypothesis Testing I LACA 50K Smooth NICL Baseline

Sm
oo

th
ne

ss

16 Hypothesis Testing II LACA 6K Smooth NICL Baseline
17 Hypothesis Testing II LACA 6K Smooth NICL Thin 0.5m
18 Hypothesis Testing II B-Spline Snakes NICL Thin 0.5m
19 Hypothesis Testing II B-Spline Snakes LACA 6K Smooth
20 Hypothesis Testing II 5X Smoothing NICL Thin 0.5m
21 Hypothesis Testing II 5X Smoothing LACA 6K Smooth
22 Hypothesis Testing II Kettunen FPDEMS NICL Thin 0.5m
23 Hypothesis Testing II Kettunen FPDEMS LACA 6K Smooth

Symmetry 24 By Angle LACA 6K Smooth Identity Line
25 By Projected Distance LACA 6K Smooth Identity Line

Table A-2: Inputs to tests conducted in this study.

B A data structure and algorithm for removing self-
coalesced line sections

In light of the disappointing results for 1:50,000 scale smoothing, we must acknowledge
the need for further methods of generalization when affecting a significant scale change.
To explore such a solution, we speculate here on a path for automated generalization. We
describe a data structure capable of supporting the automated generalization of contours
and an algorithm that mimics manual simplification of the lines by automatically elimi-
nating coalesced sections of the line. Refer to the basic structures in Figure B-1 and the
rudimentary algorithm described in pseudocode in the Appendix C and here in Figures
B-2 to B-4.

B.1 A topological TIN data structure for generalization

Most triangle structures for TINs are centered on a three-point sequence as the basic ele-
ment. These are simple structures usually designed for minimum storage and easy dis-
play. Other elements of a triangulation, especially edges between two triangles (hence the
term topological), are seldom explicitly manifest as elements in the TIN. They can only be
deduced through search methods. In a series of papers, Ware et al. describe a “Simplicial
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1
Method 1: Testing of
X and Y Accuracy by
Buffer Percent Inside

A test of x and y accuracy based on the count of points
inside the buffer (either 0.6 or 1.2 m) divided by the total
count for the data set being tested. Criteria for accepting
the test results are based on established percentages of
points adapted from quality assurance testing. See
Section 2.5.

2

Method 2:
Hypothesis Testing I:

Tests of X and Y
Accuracy Inferred

from Height
Differences

The first version of the hypothesis test used here assesses
the x and y accuracy by inference of the difference in
height between accurate estimates from the DEM and the
nominal height of the contour line. See Section 2.5 and
Figure 3. This is a test of two means using a null
hypothesis that the means are effectively equal; that
there is no difference after treatment of the input data set.
Here, acceptance of the null means that the smoothed
line is accurate and adheres closely to the NICL Baseline
contours. Rejection of the null hypothesis indicates that
the smoothed line departs significantly in x and y from
NICL Baseline contours; that it is inaccurate.

3

Hypothesis Testing
II: Tests of

Smoothness of the
Lines

The second version of the hypothesis test used here
assesses the amount of angularity removed by
smoothing. This test is based on the notion of an
enclosed angle associated with each interior vertex in a
line. See Section 2.5.4. Acceptance of the null hypothesis
here means that the process being evaluated has not
significantly changed the overall smoothness compared
to the reference line. A rejection of the null means that
the process that created the data set being evaluated has
reduced the angularity and made the line smoother.

4

Regression Analysis
and Significance

Testing for
Symmetry in the
LACA 6K Smooth

Contours

Linear regression is an ideal method for testing
symmetry of the LACA 6K Smooth results. A resulting
equation of y = x indicates perfect symmetry. By using
the medial axis along the angle bisector, an interval can
be divided into two halves and measures of smoothed
points in one half (i.e., the previous half) can be compared
to corresponding points in the next half. See Section 2.5.5
and Figures 6 and 7. A t-test is the preferred statistic for
our test of significance. Acceptance of a null hypothesis
indicates no linear relation can be found, while rejection
of the null indicates that a linear relation exists. The
closer the slope of the regression line is precisely to 1 is
an indication of relative success of the method.

Table A-3: Test method, description, and criteria for success and failure.

Data Structure” that more fully enumerates relations among potential TIN model elements,
including explicitly defined edges [56–58].

While an edge at first glance seems to be redundant, it is, in fact, an efficient element
for search and analysis and for using a triangulated model for anything other than effi-
cient storage and ease of display [58]. For example, basic navigation through the TIN is
facilitated by recursively exploiting edge-to-triangle-to-edge relations as we describe in the
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Figure B-1: A topological TIN data structure for contour line generalization.

structures above and the algorithm outlined in Appendix C (see the combination at work
in the REMOVE_SELF_COALESCED_LINE_SECTIONS and GET_NEXT_PIVOT_EDGE
functions in the pseudocode).

With regard to the structures, we also propose adding a vertex-to-polyline link (i.e.,
OwnerLine) and an explicit link of the triangle to constituent edges (i.e., Edges 1 to 3).
This includes bitmask flags associated with the individual edge1- to -3-pointers to indicate
whether or not to reverse the natural “from-” and “to-” orientation of the edge. We do this
in order to be able to form a consistent CCW-oriented triangle; a seemingly arbitrary but
practically useful convention.

Finally, we should note that the structure includes a convention of directed ordering of
the vertices in triangle edges. Successive vertices from a contour line are used to form a
directed feature edge using the from and to elements of the edge structure. Also, edges
formed between two vertices from the same contour line are ordered such that the vertex
occurring first in sequence is the from vertex in the edge (see Figure B-4A). These conven-
tions fortify the structures and simplify the development of the algorithm.

B.2 An algorithm for resolving self-coalesced line sections

Here we present an algorithm for removing vertices involved in a coalesced section of the
line using the structures defined in Figure B-1. The discussion is keyed to Figures B-2 to
B-5.

In Figure B-2, the triangulated contours for LACA 50K Smooth are shown. The coalesced
sections of the lines are highlighted in the figure and annotated as coalesced areas (CAk−m).
Each CA is identified by searching for edges along the contour lines that are: 1) common
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Figure B-2: Coalesced areas and originating edges.

Figure B-3: Navigating a topological TIN network (A) and qualifications for an originating
Edge (B).
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Figure B-4: Edge order conventions (A) and projecting vertices perpendicularly onto op-
posing edges (B)

to a single owner line; 2) composed of two non-consecutive vertices in that line; and, 3)
less than two times the line thickness in length or projected perpendicular distance. These
are originating edges (OEk−m), that is, an edge that begins the definition of an enclosed,
self-coalesced section of a contour polyline.

The vertices and edges are elements involved in traversing the TIN and are described
in the enlargement of area CAk in Figure B-3. In Figure B-3A, from a current pivot ver-
tex (pivot_vtx) and origin_edge, till the terminating edge (term_edge) is encountered, a pivot
operation about pivot_vtx is executed. The triangle right of the edge is identified as a can-
didate edge and a prospective origin_edge. We can identify the origin_edge as one of three
candidates that make up tri_right. We know that the pivot_vtx is common to two candidate
edges, only one of which is the next_pivot_edge, determined by matching endpoints of all
involved edges. The line is exhausted by a search of the right side of the line in a series of
CCW pivots up to the apex_vertex identified as vertex s in Figure B-3B. The next_pivot_edge
is also identified in Figure B-4A. A check of the length of that edge in Figure B-3B identifies
whether or not next_pivot_edge is the origin_edge for CAk.

In Figure B-4A, the ordering conventions for the contours enmeshed in a TIN are shown.
The vertex-to-owner-edge relations for vertices in a line all point to an edge connecting
the present vertex to the next one in sequence in the polyline. Additionally, vertices in the
coalesced area are directed from the front side of the coalesced section (vertices o through
r) to the back side (vertices w through t). In Figure B-4B, the projected points for successive
vertices are shown. These projected points, such as p′ in Figure B-4B, define the closest
distance between the points and opposing edges.

In Figure B-4B, the process of finding the shortest distance from a vertex being tested
for coalescence (check_vtx) to an opposing edge (opp_edge) is illustrated. Normally, the per-
pendicular distance is the shortest and is characrized by 0.0 < rp < 1.0. However, un-
der conditions where the projected value for successive edge checks abruptly change from
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Figure B-5: Relative position (rp) of projected points along an opposing edge. The
check_vtx1 projects off the line segment at an rp = −0.25: check the previous edge. The
check_vtx2 projects at 0.80: the shortest distance between the check_vtx and opp_edge is the
perpendicular distance. The check_vtx3 projects at an rp = 1.25, beyond the furtherest ex-
tent of the segment: check the next edge.

rp > 1.0 to rp < 0.0, the directly connected edge between check_vtx and a vertex of the
opp_edge is the minimum distance.

The relative position (rp) of the projected point (p′ in Figure B-4B) is used as a test to
determine whether or not the perpendicular projects within the extent of the opposite edge
(0 < rp < 1.0). Figure B-5 describes possible relations between a check_vtx and an opp_edge
and how these relations drive further checking. The concept of a projected point on a line
segment is used in several methods and tests in this paper. Here, if the the perpendicular
distance between the pivot_vtx and opp_edge is found to be less than two times the line
thickness tolerance, the vertex can be marked for deletion.

After a line is evaluated, a second pass through the vertices deletes marked vertices
from the doubly-linked list used to represent the line. In this way, the line is more properly
generalized.

Refer to the pseudocode for the algorithm in Appendix C for further details.
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