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Abstract: Existing question answering systems struggle to answer factoid questions when
geospatial information is involved. This is because most systems cannot accurately de-
tect the geospatial semantic elements from the natural language questions, or capture the
semantic relationships between those elements. In this paper, we propose a geospatial se-
mantic encoding schema and a semantic graph representation which captures the semantic
relations and dependencies in geospatial questions. We demonstrate that our proposed
graph representation approach aids in the translation from natural language to a formal,
executable expression in a query language. To decrease the need for people to provide
explanatory information as part of their question and make the translation fully automatic,
we treat the semantic encoding of the question as a sequential tagging task, and the graph
generation of the query as a semantic dependency parsing task. We apply neural network
approaches to automatically encode the geospatial questions into spatial semantic graph
representations. Compared with current template-based approaches, our method gener-
alises to a broader range of questions, including those with complex syntax and semantics.
Our proposed approach achieves better results on GeoData201 than existing methods.
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c© by the author(s) Licensed under Creative Commons Attribution 3.0 License CC©



66 LI ET AL.

1 Introduction

Geospatial data accounts for a significant fraction of available web data, with broad ap-
plications in areas including geospatial search and question answering (QA). This fraction
is growing by 20 percent or more each year [40]. Geospatial data can be either structured
(e.g., entities and relations in a database, or discrete images of visual fields) [12], or less
formal, such as in spatially-grounded natural language. With the rapid development of
knowledge bases and corresponding query languages, the retrieval of geospatial informa-
tion from structured and semi-structured resources is becoming more viable.

However, most people do not have expertise in geographic information retrieval and
knowledge bases, meaning that the most naturalistic interface is natural language, in the
form of natural language questions. In order to answer these questions, it is often nec-
essary to translate the natural language question into a structured geospatial knowledge
representations. For example, if a user were to ask Which countries does the River Danube
flow through?, a conventional search engine approach would return a list of webpages that
may contain the direct answer (in natural language), or more likely partial textual informa-
tion that the user would have to manually process to derive the answer, taking time and
effort. Automatic QA systems aim to provide a way for people to ask questions in nat-
ural language and get natural language answers, based either on answer extraction from
documents or querying over a knowledge base. However, existing QA systems struggle
to answer factoid questions when geospatial information is involved because of the diffi-
culty in accurately detecting geospatial semantic elements and relationships [22, 42, 43, 48].
Systems that can automatically answer geospatial questions are called geographic question
answering (“GQA”) systems [55].

GQA has been the target of research in geography, geographic information science, ge-
ographic information retrieval (GIR), databases, and the semantic web [55]. Based on the
type of data that is used to source the answer, QA approaches can be categorized as ei-
ther information retrieval-based (“IR-based QA” [57]) or knowledge-based (“KB-QA” [66]).
Generally, IR-based QA queries the web or other document collection for relevant docu-
ments, from which it extracts answers. However, geospatial questions often require inter-
pretation of the topological, directional, and distance relationships between places, where
there may not be a direct match with text in a document. As such, IR-based methods
are limited in their ability to provide answers to geospatial questions. For KB-QA sys-
tems, questions are answered using structured knowledge bases (KBs) like Freebase [7] or
DBpedia [1]. Here, the challenge is in translating natural language questions into struc-
tured queries [14]. With the increasing availability and richness of geospatial KBs such as
Geonames1 and OpenStreetMap (OSM),2 more and more geospatial features can be easily
queried from these KBs.

Today, most existing geospatial QA systems [24, 55, 68] are based on geospatial re-
sources and open-domain knowledge bases. These are generally encoded as RDF in the
form of (subject, predicate, object) triples, and can be queried using query languages such
as SPARQL/GeoSPARQL. Although geographic resources are becoming more and more
comprehensive, methods for translating natural language questions into formal queries to
search such resources are still largely rule-based and brittle. With recent progress in deep
learning and natural language processing (NLP), impressive results have been achieved

1https://www.geonames.org/
2https://www.openstreetmap.org/
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for open domain question answering, with the benefit that neural approaches tend to be
more robust and better at generalization. In this paper, we bridge the gap between natu-
ral language questions and existing translation methods for geospatial QA systems using
machine learning methods.

To capture the semantic information in natural language questions, we first propose a
geospatial question encoding schema that extends the semantic encoding schema proposed
in [25]. In addition to the place name, place type, and spatial relationships used in [25], our
new schema encodes additional semantic elements such as numbers, logic relationships,
and comparisons. We treat question translation as a sequence labeling task, and translate
questions to a sequence of geospatial elements. We additionally propose a novel geospa-
tial semantic graph representation to capture the semantic relations between the elements.
Compared with sequence structure representations, the graph structure can capture long-
distance relations and non-contiguous relations. For example, given the question Is there a
forest in Lancashire north of Burnley?, the template-based method of [55] will generate two
triples — (forest, in, Lancashire) and (Lancashire, north of, Burnley) — the latter of which is
incorrect (the forest should be both contained in Lancashire and be located north of the
township of Burnley; Burnley is in Lancashire so cannot be north of it). In contrast, our
graph representation can correctly model long-distance relationships, and predict the sec-
ond triple as (forest, north of, Burnley).

In addressing the research question “How can we generate spatial queries for factoid
geospatial question answering using neural methods?”, our contributions are:

• A new geospatial semantic encoding scheme which is amenable to sequence labeling.
We propose several neural tagging methods, and show that they beat a rule-based
baseline by a large margin.

• A new geospatial semantic graph formalism to model geospatial relations, and an
automatic graph generation method using the semantic encodings and semantic de-
pendency parsing. Based on the proposed tagging scheme and semantic graph for-
malism, we release an annotated dataset based on GeoData201.3

We manually evaluate the generated queries and show that our proposed approach
achieves better results than existing methods.

2 Related work

2.1 Geospatial question answering

In GQA, answering geographic questions can be based on diverse information sources such
as textual information [18,50], spatial databases [8], and spatially-enabled knowledge bases
[19]. Based on the types of geographic questions, existing work on geographic question
answering can be classified into four types [48]: (1) factoid GQA [55, 68], which focuses on
answering questions based on geographic factoids; (2) geo-analytical QA [60, 64], which
focuses on questions with complex spatial analytical intent; (3) scenario-based GQA [10,
11, 32], which associates questions with a scenario described with a map or a paragraph of
text; and (4) visual GQA [33, 46], that links questions to an image or video. In this paper,
we focus on the first of these: namely factoid GQA, and aim to answer questions through

3Data and code are available at https://github.com/haonan-li/neural-factoid-geoqa
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a spatially-enabled knowledge base. Throughout this article, the term factoid GQA is used
to refer to approaches that produce answers by querying a knowledge base.

Most existing factoid GQA systems [55, 62, 63, 68] are template-based and can only
handle a limited array of geographic questions [48]. Commonly, questions are first clas-
sified into several categories according to the intent type or syntactic/semantic structure.
Then predefined templates are used to match questions, and translate them into executable
queries. Due to the small size of existing factoid GQA datasets, there is still a lack of an ma-
chine learning-based systems, unlike open-domain QA which is predominantly machine
learning-based [4, 9, 61].

To the best of out knowledge, the earliest work on factoid geospatial question answer-
ing [62, 63] was based on the GeoQuery dataset [69], which contains 880 natural language
queries about U.S. geography, paired with corresponding queries in Prolog. This line of
work focused on semantic parsing from natural language to Prolog. Since Prolog is not
widely used for database querying and has limited expressivity as a query language, sys-
tems based on GeoQuery are heavily limited in their scope. GeoCLEF4 and GikiCLEF5 led
to a spike in geographic IR research, which gave rise to the first publications on general-
purpose geographic question answering systems, based on information extraction from
free-text documents. In 2008, the GiKiP pilot defined the task of finding Wikipedia entities
that resolve a particular information need with the use of geographic reasoning [58]. The
work of Hartrumpf and Leveling [27] in 2009 combined information extraction with GIR
methods over a spatial index of documents, and used DBpedia together with Wikipedia to
convert RDF to natural language expressions for processing by non-GIR methods.

In 2011, the Open Geospatial Consortium (OGC) proposed the GeoSPARQL6 standard
as an extension of SPARQL with better support for geospatial data. GeoSPARQL defines a
vocabulary for representing geospatial data in RDF, as well as an extension to the SPARQL
query language for processing geospatial data [5]. However, most people do not have
the expertise to write GeoSPARQL queries directly, limiting its uptake. Some recent re-
search [55, 68], therefore, has focused on translating natural language geospatial ques-
tions to GeoSPARQL queries. The research reported on the present article also follows
the approach of translating natural language geospatial questions to GeoSPARQL queries,
through an intermediate semantic representation.

Younis et al. [68] proposed a method for answering geospatial questions over DBpedia,
with the ability to handle three types of geographical queries: proximity (e.g., Find bars
within 3km of the Summer Palace), crossing (e.g., Find the mouths of the rivers that cross Oxford),
and containment (e.g., Find universities in Melbourne). However, this is only a subset of
possible geospatial queries, and the method is unable to capture relations about borders or
cardinal directions, for example. Also, the method requires manual filtering, and as such
is only a partial solution to the problem. In contrast, our approach can capture a broader
range of geospatial relationships, and is completely automated.

In 2018, Punjani et al. [55] built a geospatial QA system called GeoQA, which consists
of six components: dependency parse tree generator, concept identifier, instance iden-
tifier, geospatial relation identifier, SPARQL/GeoSPARQL query generator, and SPAR-
QL/GeoSPARQL query executor. QA is performed by first translating the natural lan-
guage questions to a set of SPARQL or GeoSPARQL queries, and then ranking and exe-

4http://www.clef-initiative.eu/track/GeoCLEF
5https://www.linguateca.pt/GikiCLEF/index.php/Main Page
6https://www.opengeospatial.org/standards/geosparql
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cuting the top-ranked queries over two endpoints using the SPARQL SERVICE keyword.
They also presented a template-based approach to translating natural language questions
into GeoSPARQL queries, that can be executed over the combination of GADM,7 Open-
StreetMap, and DBpedia. The use of a geospatial relation identifier helps to detect more
geospatial relationships than the method of Younis et al., but the template-based query
generator dramatically limits the diversity of questions the method can handle. Based on
the authors’ own evaluation, only 42.8% of questions match the hand-built templates. Our
proposed neural method, on the other hand, can potentially translate any geospatial ques-
tion into a query.

Hamzei et al. [25] recently proposed a data analysis approach to place-related questions
and answers. Although there is no applicable answer generation module, their proposed
semantic encoding schema maps tokens in geospatial questions to semantic elements, and
is a valuable tool for question and answer analysis. The authors also proposed a rule-
based pipelined method to automatic encode sentences, but found it to inevitably propa-
gate errors generated from previous steps. In this paper, we extend their semantic encod-
ing schema in Section 3.2, and show that our neural encoding approach alleviates error-
propagation, while improving encoding accuracy.

2.2 Geospatial semantics and semantic parsing

Geospatial semantics is a broad area of research that focuses on understanding and formal-
izing geographic content [30]. Hu [30] identified six major research areas contributing to
geospatial semantics through a systematic literature review: (1) semantic interoperability and
ontologies, focused on identifying geospatial concepts to increase interoperability of geospa-
tial data and services [31, 39]; (2) digital gazetteers, that use geospatial ontologies to label
geospatial objects and events with spatial and non-spatial properties and relations [21]; (3)
geographic information retrieval, which focuses on extracting geospatial semantics from Web
queries and retrieving content through semantic matching [35, 41]; (4) geospatial linked data,
which formally captures spatial objects and their relationships to establish spatially-aware
knowledge bases [34]; (5) place semantics, which is a component of geospatial semantics and
aimed at formalizing the notion of place [26, 59]; and (6) qualitative reasoning over cognitive
geographic concepts, to provide the ability to capture and reason over human qualitative
spatial knowledge [17].

In the area of natural language processing, semantic parsing is the task of mapping
natural language text to graph-based meaning representations. It is widely used in
knowledge-based question answering, as a semantic parser can capture the semantic re-
lations latent in the question [4, 6, 67]. In the past few years, researchers have developed
various semantic parsing formalisms and semantic graphbanks. DELPH-IN MRS-derived
bi-lexical dependencies (DM), Enju Predicate-Argument Structures (PAS), and Prague Se-
mantic Dependencies (PSD), are three formalisms that were used to annotate graphbanks
as part of a 2014 SemEval shared task [52], which use tokens of the sentence as nodes and se-
mantic relations as edges. There are notable differences between the three formalisms, and
no clear answer as to which formalism is best for semantic parsing. In terms of dependency
labels, PSD is linguistically more fine-grained, PAS has the smallest label inventory and the
shallowest semantics, and DM is located somewhere between PSD and PAS in terms of
expressivity and tractability, limiting itself to argument structures that are grammatical-

7https://www.gadm.org
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Figure 1: Neural factoid geospatial question answering model (NeuralGQA) architec-
ture. The semantic encoder and semantic dependency parser are neural network modules,
where embeddings are used to represent sentences. The geospatial semantic graph is an
intermediate representation of each sentence, and the GSG-based query generator is a rule-
based module which takes the geospatial semantic graph as input and outputs executable
queries.

ized. Other graphbanks like Abstract Meaning Representations (AMR) [3] and Elementary
Dependency Structure (EDS) [20] do not enforce the requirement that the original tokens
of the sentence are preserved: in AMR, the alignment between graph nodes and tokens is
implicit and noisy [47], while in EDS the alignments are provided, but the complex associ-
ations in the graph representation (e.g., the fact that multiple nodes can align with a single
token) make them incompatible with dependency parsing methods [44].

To the best of our knowledge, we are the first to apply neural semantic parsing to ge-
ographic question answering, or geographical information systems. Note that “semantic
parsing” here means semantic dependency parsing, i.e., mapping a sentence into a formal
representation of its meaning in the form of a directed graph with arcs between pairs of
words, which is different from the term “geoparsing” and “geotagging” in the GIR litera-
ture [2,22,49], where the terms represent the task of parsing texts to detect terms which are
associated with geographic places.

Another aspect of related work is Spatial Role labeling (SpRL) [37, 38, 56], which con-
cerns the extraction of the key components of spatial semantics from natural language, such
as trajectors, landmarks, and spatial indicators. The main difference between geospatial se-
mantic parsing and the SpRL task is that we analyze all types of semantic dependencies
between elements in the sentences, instead of just focusing on the sentence elements that
have spatial semantics. This is a direct consequence of our focus on geospatial semantics in
the context of question answering, and the need to capture the full syntax and semantics of
questions.

3 Methodology

In this section, we discuss how to translate natural language geospatial questions to
the query language SPARQL/GeoSPARQL. We first introduce a new semantic encoding
schema and a graph representation method that captures the semantic and logic relations
of geospatial questions in Section 3.1. We then re-define the automatic encoding as a se-
quence labeling task in Section 3.2. Next, in Section 3.3, we discuss how to automatically
generate the graph representations from raw sentences using a semantic encoder and a se-
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Semantic Type #Sents Prop Semantic Type #Sents Prop

PLACE NAME 200 100% PLACE TYPE 172 86%
ACTIVITY 6 3% SITUATION 34 17%
QUESTION WORD 200 100% SPATIAL RELATIONSHIP 178 89%
OTHER OBJECTS 24 12% COMPARISON 68 34%
NUMBER 26 13% LOGIC RELATIONSHIP 8 4%

Table 1: Number of questions in GeoData201 which contain each of the semantic elements.

mantic parser. Finally, the transformation from graph representations to SPARQL queries
is described in Section 3.4. Figure 1 shows our NeuralGQA model architecture.

3.1 Geospatial semantic encoding and graph representation

To semantically encode a geospatial question, we map the sequence of words in the ques-
tion to a sequence of predefined semantic elements. In most cases, a span of text in the
original question can be mapped into a single semantic element. For example, the expres-
sion to the west of can be encoded into a single SPATIAL RELATIONSHIP, and the text San
Francisco can be encoded into a single PLACE NAME. There are several existing spatial se-
mantic encoding schemas [16, 25, 37, 56], most of which are designed for general-purpose
geographic information systems. Among these, the schema proposed by Hamzei et al. [25]
is specifically designed for place-related questions, and a good fit for our work. In this
section, we extend the semantic encoding schema of [25], and propose a neural approach
to automatically encode questions.

The basic set of semantic elements in our encoding is: (1) PLACE NAMES (e.g., Mel-
bourne); (2) PLACE TYPES (e.g., university); (3) ACTIVITIES (e.g., to study); (4) SITUATIONS
(e.g., to live); (5) QUALITATIVE SPATIAL RELATIONSHIPS (e.g., near); (6) QUALITIES (e.g., beau-
tiful); (7) QUESTION WORDS (e.g., where); and (8) other OBJECTS. Here, we remove QUALI-
TIES because of disagreement over the definition, and high levels of interpretation between
individuals. We extend the semantic encoding to include: (9) COMPARISONS (e.g., at least);
(10) NUMBERS (WITH UNITS) (e.g., 2km); and (11) LOGIC RELATIONSHIPS (e.g., and). Table 1
details the proportion of questions that include each semantic element in the GeoData201
dataset. As can be seen, a high proportion of questions contain at least one of the new
semantic elements of NUMBER, LOGIC RELATIONSHIP, and COMPARISON. Consequently,
ignoring these encoding classes in the tagging process will affect the understanding of the
questions. For example, in the question What is the most populated city in the United Kingdom
except London?,8 if we do not encode the logical relationship word except and query for the
most populous city in the UK, London will be the answer.

The geospatial semantic tagger encodes natural language questions to geospatial se-
mantic elements with a sequence tagger. As is, however, these semantic elements are ar-
ranged in the order of the corresponding text in the original question, and do not reflect
the logical and semantic dependency structure of the sentence. To tackle this problem,
we propose a graph representation named Geospatial Semantic Graph (“GSG”) to com-
prehensively model the semantic structure of the question sentence. The proposed graph

8The wording is slightly awkward, but this is the original form of the question in GeoData201.
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representation consists of nodes and edges, where nodes are the semantic elements tagged
in Section 3.2 that comprise a piece of text and the corresponding semantic tag, and edges
are labelled with semantic relations that hold between the source and target. We first define
two types of nodes: predicate nodes and argument nodes. Argument nodes, usually nouns,
are arguments that are connected by predicate nodes. Predicate nodes have one or more
arguments, which can in turn be argument nodes or other predicate nodes. In most cases, a
given node has a unique type, but there are instances where a node is both a predicate and
an argument node, as we discuss later. Edges emanate from predicate nodes and point to
predicate/argument nodes. The detailed definitions of nodes and edges are listed below,
with examples in Figure 2.

• QUESTION WORDS include word sequences like where, what, does, and is there, and are
always predicate nodes with zero or one argument. For true/false questions — for
example when the question starts with does — the argument of the question word is
usually the rest of the sentence, so we do not explicitly indicate it and treat the number
of arguments as zero. For other QUESTION WORDS like What or Which, the arguments
are usually the direct objects of the question words. In Example 1 in Figure 2a, the
node cities is the argument of which.

• PLACE NAMES and PLACE TYPES are always argument nodes. A PLACE TYPE usually
serves as a constrain to filter pre-selected candidate places. Although it does not
explicitly refer to any place, it implies a set of candidate places of the same type, such
that any predicates that connect to a PLACE NAME can also connect to a PLACE TYPE.
As shown in Example 2 in Figure 2a, cities (PLACE TYPE) and England (PLACE NAME)
are arguments of the predicate in.

• SPATIAL RELATIONSHIPS, as in Example 2 of Figure 2a, are predicate nodes. They
have two arguments and together form a triple relation (ARG1, predicate, ARG2).
Such predicates denote a spatial relationship between the two arguments, and op-
tionally include additional attributes like the distance between the two arguments.
These implicit attributes mean that predicate nodes have the potential to be an argu-
ment node of other relations. In Example 5, the predicate node from links two place
names Castle of Edinburgh and Calton Hill without any explicit spatial relationship, in
addition to implying the distance attribute between these two places. Hence, it can
be used as an argument node of other predicates (less than) and compared with other
numbers.

• ACTIVITIES and SITUATIONS are usually predicate nodes. Similar to SPATIAL RELA-
TIONSHIPS, these words sometimes include attributes, usually specifying the number
of instances that satisfy the activity or situation. In this case, they can be a predicate
and argument node at the same time. In Example 3 in Figure 2a, have, as a predicate
node, implies the number of castles that a city has. While in Example 4, it plays the
role of an argument node.

• COMPARISONS like at least and less than are always predicate nodes in the graph. They
can either connect two nodes of the same type to make a comparison, or connect
nodes with different semantic types where one implies the same type of concept as
another. As mentioned, a comparison node can connect a number with a predicate
node, to imply a distance between two places. In Example 4, have implies the number
of castles in a city, making it an argument that can be compared with other instances
of class NUMBER.

www.josis.org
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(a) Decomposed examples of nodes and predicates.

(b) Whole sentence graph.

Figure 2: Examples geospatial semantic graphs.

• LOGIC RELATIONSHIPS are always predicate nodes with two arguments. Words like
and or or connect two arguments of the same semantic type. Negation words like not
or except connect two arguments with different semantic types. For example, in the
sentence What is the largest city in China after Beijing?, the node after connects a PLACE
TYPE with a PLACE NAME.

• NUMBERS and other OBJECTS are always arguments, as in Example 4 in Figure 2a.

Based on the definitions above, we manually annotate the 201 geospatial questions in
the GeoData201 dataset with semantic graphs. Intuitively, the semantic relations between
two or three nodes are straightforward to identify, as demonstrated in Figure 2a. However,
when we take all nodes into consideration (see Figure 2b), the number of possible edges
between nodes increases rapidly.

3.2 Generating geospatial semantic encodings through sequence label-
ing

The encoding schema defines the semantic categories to assign sequences of words to.
However, manual labeling is time-consuming and labor-intensive, and we desire an au-
tomatic approach to tagging semantic elements. Various tagging approaches have been
proposed in NLP. The most common approaches are pipelines, as shown in Figure 3 (left).
A typical pipeline consists of several steps including stopword removal, part-of-Speech
tagging, gazetteer and dictionary lookup, and preposition classification. These pipelined
methods are usually paired with hand-engineered rules to assign tags to text. However,
these rule-based approaches are not able to handle misspellings, abbreviations, and other

JOSIS, Number 23 (2021), pp. 65–90
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Figure 3: Comparison of tagging methods: (1) to the left is a pipelined, rule-based tagging
approach; and (2) to the right is our neural tagging approach. The grey boxes show the
tools we used to achieve the corresponding steps.

types of irregular text. Furthermore, the pipelined structure inevitably results in error prop-
agation, such as the rule in [25] that only prepositions anchored to a place name (e.g., in
Shanghai) should be encoded as a spatial relationship. Using a pipelined encoding method,
if a place name is not detected, the spatial relationship will also not be detected because the
preposition’s anchor will be considered to be missing.

In this paper, we treat semantic encoding as a sequence labeling task. We first project
the tokens into a dense vector space in which words with similar meanings have similar
representations.9 For example, in word representation vector spaces, the word US is likely
to be near to America but far from sport. After representing words by their embeddings,
a sequence labeling model is used to capture the inter-word dependencies and sentence
structure. Given an annotated dataset, any sequential tagger can be trained and used end-
to-end. As illustrated in Figure 3 (right), compared with the rule-based pipelined encoding
method (left), a neural approach is more direct and concise. Figure 4 is an example of the
outputs of the rule-based approach of [25] and our neural method (as detailed in Section
4.1). The rule-based tagger based on the original semantic encoding schema fails to detect
numbers (e.g., 1km) and abbreviations (e.g., LA) because it lacks gazetteers, and thus fails
to capture spatial relationships (e.g., in a range of ) associated with them. In contrast, our
neural tagger with the new tagging schema can tag more diverse semantic elements, even
when containing non-canonical text. The end-to-end model method labels all words in a
sentence in a single step, effectively eliminating error propagation.

9This distributed representation is usually called a “word embedding”.
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Figure 4: Example geospatial semantic tagging outputs. The first is the result of a rule-
based tagger, which can not detect NUMBERS, LOGIC RELATIONSHIP, and COMPARISONS,
and the second is the result of our neural tagger.

3.3 Enhanced semantic parsing for GSG

To generate the geospatial semantic graph automatically, we first use a semantic depen-
dency parser to map sentences to dependency graphs. Then, we combine the parsing re-
sults with the semantic encoding results to construct the final geospatial semantic graph.

In this paper, we use the compositional semantic parser of Lindemann et al. [45] to
generate the semantic graph. The idea is to build graphs from smaller graph fragments
by representing each graph with its compositional tree structure, and learning to generate
the graph using a dependency parser and “supertagger”. Here, the supertagger is used
to identify elementary graphs for each individual word, and the dependency parser is re-
sponsible for identifying the algebraic operations to combine the elementary graphs. As
demonstrated in Figure 5, the DM semantic graph of the sentence in Figure 6 (a) is built
from the compositional trees and operations that combine these trees. The compositional
tree structures of [45] are highly similar to our decomposed graph structure in Figure 2a.
Their parser combines the compositional semantic AMR parser [23] with some heuristics
that help to compute the latent compositional structures of graphs, and learns latent repre-
sentations across several semantic datasets based on multi-task learning. Among the five
graphbanks mentioned in Section 2.2, AMR and EDS graphbanks map words to concepts
during parsing based on a semantic encoding (much like machine translation). In contrast,
DM, PAS and PSD are dependency graphs that map words of the sentence onto graph
nodes. In addition, DM limits itself to argument structure distinctions that are grammati-
calized, making it the best fit for GSG. Hence, we use their basic model to predict the DM
graph representations as the intermediate graph representation.

Because the DM graph representation treats each word in the given sentence as a node,
it introduces some unwanted nodes that need to be merged in our geospatial graph. An
example is shown in Figure 6 a, where in the DM formalism, the tokens Calton and Hill are
nodes which are linked by an edge with label compound, indicating that this is a compound
word. However, in our geospatial semantic graph representation, multiple words in the
sentence may make up one node. To transform DM graph representations to our geospatial
semantic graph representations, we combine the generated DM graphs with the semantic
encoding results, and apply a series of rules to adjust the edges between nodes.

With the example in Figure 6, the detailed structure transformation rules are:

1. Remove intra-node edges and retain inter-node edges. (Figure 6 b)
2. Remove all tokens not belonging to any nodes. If a non-node token links two nodes,

remove the token but add an extra edge between the two nodes; now all edges are
inter-node edges. (Figure 6 c)

3. For a predicate node that has two argument nodes, if both nodes are of the same type,
or one is PLACE TYPE and the other is PLACE NAME, keep the edges; if the predicate
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Figure 5: Compositional tree structure (nodes and edges in box), and algebraic operations
(on top of the box). There are two operations: the apply operation APPX and modify op-
eration MODX . In the figure, “mwe”, “comp”, and “det” signify multi-word expression,
compound word, and determiner, respectively.

Is the Castle of Edinburgh less than 2 km away from Calton Hill ?
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Is the Castle of Edinburgh less than 2 km away from Calton Hill ?
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Figure 6: Example of the generated DM semantic graph and the proposed structure tran-
formation rules, given the gold semantic encode. Each box indicate a geospatial semantic
node, which may be PLACE NAME, COMPARISON, etc. We keep the direction and label of
edges from the generated DM graph for convenience. Note that the label direction in the
final graph is only depends on the node type (from predicate node to argument node).

node is SPATIAL RELATION and one of the argument nodes is NUMBER, shift it to
the nearest unconnected PLACE NAME or PLACE TYPE, and add a new edge to the
COMPARISON node if there is no it is only connected with NUMBER. (Figure 6 d)

In this way, we generate the geospatial semantic graph.

www.josis.org

http://www.josis.org


NEURAL FACTOID GEOSPATIAL QUESTION ANSWERING 77

3.4 From GSG to SPARQL queries

To demonstrate an application of the proposed semantic parsing method, we developed a
template-based approach to generate GeoSPARQL queries from GSG representations, fo-
cusing on ASK (yes/no) and SELECT (return stored values) queries. GeoSPARQL queries
have several constituents including PREFIXES, ASK/SELECT statements, and WHERE
clauses. PREFIXES define the namespaces from which to access knowledge bases, ontolo-
gies, and implemented functions. The ASK/SELECT statements determine the output of
the query, and the WHERE clauses capture the criteria mentioned in the question. These
constituents are constructed based on predefined templates, described below.

First, the overall structure of a given query (i.e., ASK vs. SELECT query) is determined
from the extracted question words. Next, the WHERE-clause is dynamically generated
by concatenating individual concept and relation definition statements. Finally, in case
of SELECT queries, the intent of questions is derived using a heuristic approach. Here, we
used a predefined set of prefixes to access SPARQL/GeoSPARQL functions and to generate
shorter and easier-to-read queries (Query 1).

PREFIX geos: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX db: <http://spatial.au/ontology#>
PREFIX spatialf: <http://jena.apache.org/function/spatial#>
PREFIX units: <http://www.opengis.net/def/uom/OGC/1.0/>

Query 1: Predefined set of prefixes

The WHERE-clause is part of the general structure for both ASK and SELECT queries.
To generate the WHERE-clause, for each extracted geographic concept (i.e., PLACE NAMES,
PLACE TYPES, and OBJECTS) a unique variable is assigned. Each concept is defined using
predefined templates and the corresponding variable name. The concept definition state-
ments define a place based on PLACE NAME or PLACE TYPE using an is-a relationship. The
extracted OBJECTS such as population and temperature are defined as properties of their
corresponding concept variables. The extracted relations among the concepts (i.e., ACTIV-
ITIES, SITUATIONS, LOGICAL, and SPATIAL RELATIONSHIPS) are translated to the formal
query language using the participating variables and predefined relation templates. Def-
inition statements for PLACE NAMES and PLACE TYPES are presented in Queries 2, and 3,
respectively.

?<PLACE> db:has_name ?<PLACE>NAME;
geos:hasGeometry ?<PLACE>GEOM.
FILTER(regex(?<PLACE>NAME, "<TOPONYM>", "i" )).

Query 2: Place name definition template

?<PLACE> db:has_fclass ?<PLACE>TYPE;
geos:hasGeometry ?<PLACE>GEOM;
db:has_name ?<PLACE>NAME.
FILTER(regex(?<PLACE>TYPE, "<TYPE>", "i" )) .

Query 3: Place type definition template

The relationships are captured through has-a relationships. In the case of spatial re-
lationships, a lookup table is used to map the spatial prepositions to their corresponding
spatial relationships implemented in GeoSPARQL. The relationships are constructed by the
predicate and argument(s) which are captured in the semantic parse tree. The template for
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defining attributes and distance relationships, as examples of the relation templates, are
shown in Queries 4 and 5.

?<PLACE> db:has_<ATTRIBUTE> ?<OBJECT>.

Query 4: Attribute relation template

FILTER(geof:distance(<PLACE1>, <PLACE2>, units:<UNIT>) < <DISTANCE>).

Query 5: Distance relation template

In the case of SELECT queries, the SELECT-statement could: (1) select some variables,
or (2) apply a function (e.g., distance) over the values of selected variables. The selected
variables are related to the intent of the questions. Here, we extended the heuristic for
extracting intent of geographic questions developed by Xu et al. [64]. The intent is derived
using the following rules:

• Question Word Rule: Here, we focus on where, what, and which questions. For where
questions, the intent is the location of the selected variable. For what and which ques-
tion, the following rules are used to determine the intent.

• Less Specificity Rule: The more specific the concepts are, the less likely they are to
be the intent of the question — e.g., an OBJECT or a PLACE TYPE (if mentioned in the
question) is more likely to be the intent of the question in comparison to a PLACE
NAME. For example, in the question Which cities in England have at least two castles?,
cities and castles are more likely to be the intent of the question than England. This
rule determines the specificity of concepts using their encoding classes, i.e., OBJECTS,
PLACE TYPES, and PLACE NAMES. Here, the objects (properties of places) are the least
specific concept. Next most specific are PLACE TYPES, and finally PLACE NAMES.

• Earlier Position Rule: This rule is based on the structure of the questions. The subject
of the questions is the earliest concept extracted from the questions. For example, in
question: Which cities in England have at least two castles?, the concept (i.e., cities) is
determined as the intent of the question.

Finally, aggregation, sorting, and spatial functions such as distance are considered to
be part of the SELECT-statement. The general template for functions is constructed by
the function name and a set of variables. The relation between function names and their
variables is captured in the parsing results. In the special case of aggregation and sort-
ing, GROUP-BY and HAVING statements, and ORDER-BY and LIMIT-statements are con-
catenated at the end of the generated query, respectively. Query 6 shows the generated
GeoSPARQL query for the question, Is the Castle of Edinburgh less than 2km away from Calton
Hill?
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PREFIX geos: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX db: <http://spatial.au/ontology#>
PREFIX spatialf: <http://jena.apache.org/function/spatial#>
PREFIX units: <http://www.opengis.net/def/uom/OGC/1.0/>

ASK {
?castl0 db:has_name ?castl0NAME;
geos:hasGeometry ?castl0GEOM.
FILTER(regex(?castl0NAME, "castle of edinburgh", "i" )) .

?calto1 db:has_name ?calto1NAME;
geos:hasGeometry ?calto1GEOM.
FILTER(regex(?calto1NAME, "calton hill", "i" )) .

FILTER(geof:distance(?calto1GEOM, ?castl0GEOM, units:kilometer) < 2 ).

}

Query 6: A generated GeoSPARQL query

4 Experiments and results

To test the effectiveness of the proposed semantic encoding schema and graph representa-
tion, as well as evaluate the corresponding neural model, we use the annotated GeoData201
dataset and perform 5-fold cross-validation experiments on semantic encoding and graph
generation.10 In this section, we present the technical details, evaluation metrics, and ex-
perimental results.

4.1 Experimental setup

4.1.1 Semantic encoding

Formally, the input for semantic encoding is a question sentence S = < s1, s2, ..., sn >
where si is the i-th token in the sentence, and the output is a list of semantic labels (de-
scribed in Section 3.2) < t1, t2, ..., tn > corresponding to each token in the input. We base-
line against a rule-based encoding method, which we compare with two trained sequence
taggers.

We reimplement the rule-based semantic encoder of [25] as a baseline. In detail, we first
perform sentence tokenization and POS-tagging and dependency parsing using the NLTK
toolkit.11 12 then the semantic encoding is done based on the pre-constructed dictionary
and predefined rules. A brief overview of the rules is as follows:

• Noun encoding Nouns are encoded in the order of place names (toponyms), followed
by place types, and objects. The GeoNames gazetteer is used to match toponyms, and
remaining nouns are matched against a dictionary of place types, failing which, they
are encoded as objects.

10Due to the very small data size, we do not perform hyperparameter tuning.
11https://www.nltk.org
12NLTK is used to perform part-of-speech tagging, using tags such as verb, noun, adjective, determiner, adverb,

pronoun, preposition, conjunction, and interjection. Note that these differ from our semantic tags (place name,
place type, comparison, etc.), which are the result of the rule-based semantic encoder.
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• Verb encoding: First, we collect two sets of dynamic verbs (action and stative verbs)
from online resources, and generate an ELMo [54] embedding vector for each verb
in the verb set. Then we classify the verbs in the natural language questions into
activities or situations by calculating the Euclidean distances between the embedding
vector of the verb and the vectors in the two sets, and classify based on the k-nearest-
neighbour algorithm with k equals to 3.

• Preposition and adjective encoding: First, we build a dependency parse tree of the
question sentences. Then extract the case and adjective modifier (amod) dependencies
for prepositions and adjectives. Finally, we encode prepositions anchored to a place
name as spatial relationships, and adjectives modifying a place type or a place name
as qualities of places.

For full details, see [25].
For the neural network model, we treat the task as a token-level multi-class classifica-

tion task for each token in the sentence. We experiment with two model architectures: (1) a
recurrent neural network, and (2) a transformer-based neural network. As detailed below:

• The recurrent neural network is implemented by building a dense layer on top of a
single long short term memory (LSTM) layer [29]. The LSTM layer can help encode
the contextual information, and the dense layer helps to simplify the hidden states
and make the classification. We concatenate GloVe [53] and ELMo [54] embeddings
as word representations, and train the model for 20 epochs using stochastic gradient
descent (SGD) with a learning rate of 0.1 and batch size of 16.

• For the transformer model, we build a dense-layer classifier on top of BERT, a pre-
trained language model [13]. We use BERT-base-uncased (12 layers and 768 hid-
den size) and fine-tune the entire model for 10 epochs with a learning rate of 5e−5

and batch size of 16. All other hyperparameters are set to the default.

4.1.2 Semantic graph generation

For geospatial semantic graph generation, we use two baselines. The first is a random
baseline, and generated by randomly creating edges between any two nodes. For two
ordered nodes N1, N2, the probability of the edge from N1 to N2 is set to 0.5.13 A random
baseline is commonly used to assess (i.e., calibrate) the complexity of a task and evaluate
whether a machine learning model has really learned useful information. We use it here
to provide the reader with an estimate of an overall level of challenge. For example, for a
binary classification task with an unbalanced dataset, a majority-baseline accuracy of 70%
is a proxy for the relative label skew, and it is reasonable to expect results well over 70%.

The second baseline is to create edges by syntactic dependency parsing. We use bi-
affine classifiers on top of a bidirectional LSTM (BiLSTM) [15] with GLoVe embeddings.
We remove intra-node dependencies and keep inter-node dependencies as edges.

As a comparison, our model takes the form of a semantic parser using the pre-trained
BiLSTM-based arc-factored semantic dependency parsing model of Kiperwasser and Gold-
berg [36] with BERT embeddings.14 The parser predicts the semantic dependency struc-
ture of a question, which we then translate into a node-level semantic structure using our

13Noting that we do not generate labels, so can only evaluate in terms of unlabelled attachment scores.
14BERT decomposes a word into multiple tokens and generates sub-token representations, we then pull out a

single vector for each original word.
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structure transformation rules described in Section 3.3. Note that the proposed structure
transformations are based on the combination of the semantic parsing results and the DM
graph representation, while the baseline models are not combined and tested with the DM
representation.

4.1.3 Query generation

The query writer takes the semantic graph representation as input and produces the
GeoSPARQL query. To make it comparable with previous work [55], we conduct gener-
ation and evaluation on half of the dataset, following [55]. As different knowledge bases
have different ontologies and resources (e.g., a street name may appear in OpenStreetMap
but be missing in DBpedia) we didn’t assign the namespaces of the triples to the resulting
queries.

4.2 Evaluation metrics

The evaluation of semantic encoding is conducted on three levels: token-level, node-level,
and sentence-level. For token-level evaluation, we treat each token individually with a
corresponding tag and report the accuracy score:

Accuracy =
Number of correct predictions

Total number of predictions
(1)

For node-level evaluation, similar to the assessment for NER, each node is a unit, and
the prediction is considered to be correct if both the node boundary and tag are correct. We
report precision, recall, and F1-score of the prediction results as follows:

Precision =
Number of correct predicted edges

Total number of predicted edges
(2)

Recall =
Number of correct predicted edges

Total number of true edges
(3)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

For sentence-level evaluation, a sentence is correct only if all node boundaries and tags
are correct. We calculate the sentence-level performance as an accuracy score.

The semantic graph generation results are evaluated at the edge and graph levels. For
edge-level evaluation, we report unlabelled precision, recall and F1-score of the generated
edges. For graph-level evaluation, a graph is correct only if all predicted edges are correct.
We report the whole graph accuracy.

Because we do not have the ground truth answers of the GeoData201 dataset, the eval-
uation of the generated queries is performed manually. We report the ratio of success-
fully generated queries and the ratio of correct queries. Three PhD students familiar with
SPARQL query language and knowledge base were asked to do the manual evaluation.
Given a natural language question, they were asked to judge whether the model generated
query is correct. The final decisions were made by majority vote.
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Method Token-level Node-level Sentence-level
Acc P R F Acc

Rule-based 78.8 76.7 76.2 76.5 34.5
LSTM 92.6 83.9 85.3 84.6 48.5
BERT 96.4 93.3 95.0 94.1 78.0

Table 2: Semantic encoding results. “Acc”, “P”, “R”, and “F” denote accuracy, precision,
recall, and F1-score, respectively.

Method g.t. Tag Edge Graph

Acc P R F Acc

Random yes 100 16.4 51.1 24.8 0.0
SynP yes 100 26.3 39.7 31.6 0.0

SemP no 96.4 53.3 66.9 59.3 25.0
yes 100 56.2 69.8 62.3 29.0

SemP + ST no 96.4 71.1 72.9 72.0 45.0
yes 100 75.5 75.8 75.7 50.0

Table 3: Graph generation results. “g.t.” indicates whether we use gold geospatial seman-
tic tags. “SynP” denotes syntactic parsing, “SemP” denotes semantic parsing, and “ST”
denotes structural transformation.

4.3 Results

Table 2 shows the semantic encoding results. The neural network approaches beat the rule-
based approach across all evaluation metrics, showing that they are both more robust but
also more accurate, and able to capture context despite the small data training regimen.
The BERT-based model achieves the best performance with absolute improvements over
the rule-based baseline of 17.6%, 17.7%, and 43.5% at the token-level, node-level (F1), and
sentence-level, respectively. BERT is helpful in many NLP tasks because of the large-scale
pre-training and well-designed model structure. For this token-level classification task, the
reason it outperforms the LSTM model is likely due to the better contextualized represen-
tations.

The graph generation results are presented in Table 3. The two baseline models get poor
performance on both edge prediction and graph construction. Compared with syntactic
dependency parsing, the random baseline gets a higher recall but lower precision, which is
because it predicts a denser graph than the ground truth. In the GeoData201 dataset, one
node usually has less than three edges linked to it, but for the random baseline, each node
will be expected to have n/2 edges (where n is the total number of nodes). The syntactic
parser (“SynP”) beats the random baseline because of the higher precision. The results
of the semantic dependency parser (“SemP”) under different settings outperform the two
baselines by a substantial margin. When paired with structure transformation rules, both
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Template coverage Generate Query Correct Query Final∗

GeoQA 43.0 51.2* — 22.0
NeuralGQA 100.0 45.0* 71.0* 38.0

Table 4: Query generation results. “*” indicates the results are based on the correct predic-
tions of previous step.

edge prediction and graph prediction increase, and we produce a perfectly correct semantic
graph (a very stringent evaluation metric!) 50% of the time.

Table 4 shows the evaluation over the generated queries, including results for GeoQA
[55] on the same test set (noting that due to the different evaluation metrics and query
generation approaches, their results are not directly comparable with ours). In terms of
the number of questions that can be handled, their template-based method covers 43%
questions in the dataset, while our neural approach can deal with all questions. In other
words, our neural method can generate graph representation for any geospatial question,
which is a significant advance on this task. Of all the questions that can be handled (43% for
GeoQA and 100% for NeuralGQA), the GeoQA method successfully generates answers for
51% of the questions. The final score is the proportion of queries for which an answer was
successfully generated. As a comparison, our method correctly generates semantic graphs
for 45% of questions, and manual evaluation shows that our graph-to-query transformation
achieves 71% accuracy.

5 Discussion

5.1 Drawback of the pipelined method

The proposed method uses two pipelined steps to build geospatial semantic graphs from
raw text inputs, where the first step is semantic encoding, and the second step is graph
construction from the encoded sentences. As mentioned above, pipelining leads to error
propagation. From Table 2, we saw that the best tagger could achieve only 73% sentence-
level accuracy. Table 3 demonstrates that tagging errors result in failures to build semantic
graphs. Building a joint model for tagging and parsing [28, 51, 65] is a possible solution to
this problem, which we plan to investigate in future work.

5.2 Machine learning vs. rule-based approach

Although the experimental results show that the neural method beats the rule-based
method, there are some limitations to the neural method. First, the lack of explainabil-
ity, and perhaps more importantly, lack of fine-grained control in training of the neural
network, is a well-known limitation of neural methods. Second, any machine learning ap-
proach (whether neural or otherwise) is data-driven and generally requires a large amount
of training data. We used a pretrained DM graph generation model to generate interme-
diate representation in our experiments, rather than an end-to-end method, because of the
prohibitively small size of the dataset.
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Theoretically, rule-based methods can achieve (near-)perfect results over a closed
dataset, but the process of designing hundreds or even thousands of rules is time-
consuming, and the resulting system is often brittle and doesn’t generalize well to unseen
data. Machine learning methods learn patterns from a large number of samples, and there
are well-established training methods for reducing overfitting on the training data, and
encouraging generalization. In this paper, we demonstrated the utility of a neural method
for factoid geospatial question answering. The sequence labeling approach we proposed
can be applied to other encoding schemata, where similar results should be achievable with
similar amounts of labelled data (160 sentences) and numbers of label types (10).

6 Conclusions and future work

In this paper, we addressed the task of translating natural language geospatial questions
into executable queries using semantic encoding and parsing. We proposed a new semantic
encoding schema and graph representation to model the semantics of geospatial questions,
and automated the tasks of semantic encoding tagging and graph representation genera-
tion. To evaluate our method, we manually annotated the GeoData201 dataset and trained
several neural network models over it, and found our NeuralGQA method can achieve
better results than all previous approaches, providing a broad-coverage automatic query
generation method.

In the future, we plan to extend the GeoData201 dataset with extra questions and an-
notations, to better train our machine learning models. With a larger dataset, we will be
able to train semantic parsers on it directly, rather than using intermediate representations
combined with structure transformations. Further, we will endow the query generator with
the ability to automatically assign namespaces using a reinforcement learning approach, to
make the system fully automatic.
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doi:10.5555/2668256.2668257.

[60] SCHEIDER, S., NYAMSUREN, E., KRUIGER, H., AND XU, H. Geo-analytical
question-answering with gis. International Journal of Digital Earth (2020), 1–14.
doi:10.1080/17538947.2020.1738568.

[61] SOROKIN, D., AND GUREVYCH, I. Modeling semantics with gated graph neural net-
works for knowledge base question answering. In Proceedings of the 27th International
Conference on Computational Linguistics (2018), Association for Computational Linguis-
tics, pp. 3306–3317.

[62] TANG, L. R., AND MOONEY, R. J. Automated construction of database interfaces:
Intergrating statistical and relational learning for semantic parsing. In Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and Very Large Corpora
(2000), pp. 133–141. doi:10.3115/1117794.1117811.

[63] THOMPSON, C. A., CALIFF, M. E., AND MOONEY, R. J. Active learning for natural
language parsing and information extraction. In Proceedings of the Sixteenth Interna-
tional Conference on Machine Learning (1999), pp. 406–414.

JOSIS, Number 23 (2021), pp. 65–90

http://dx.doi.org/10.3115/v1/d14-1162
http://dx.doi.org/10.18653/v1/n18-1202
http://dx.doi.org/10.1145/3281354.3281362
http://dx.doi.org/10.18653/v1/s15-2149
http://dx.doi.org/10.1145/3200947.3201023
http://dx.doi.org/10.5555/2668256.2668257
http://dx.doi.org/10.1080/17538947.2020.1738568
http://dx.doi.org/10.3115/1117794.1117811


90 LI ET AL.

[64] XU, H., HAMZEI, E., NYAMSUREN, E., KRUIGER, H., WINTER, S., TOMKO, M., AND
SCHEIDER, S. Extracting interrogative intents and concepts from geo-analytic ques-
tions. AGILE: GIScience Series 1 (2020), 23. doi:10.5194/agile-giss-1-23-2020.

[65] YANG, L., ZHANG, M., LIU, Y., SUN, M., YU, N., AND FU, G. Joint POS tag-
ging and dependence parsing with transition-based neural networks. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 26, 8 (2017), 1352–1358.
doi:10.1109/TASLP.2017.2788181.

[66] YANG, M., LEE, D., PARK, S., AND RIM, H. Knowledge-based question answer-
ing using the semantic embedding space. Expert Syst. Appl. 42, 23 (2015), 9086–9104.
doi:10.1016/j.eswa.2015.07.009.

[67] YIH, W., CHANG, M., HE, X., AND GAO, J. Semantic parsing via staged query graph
generation: Question answering with knowledge base. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the Asian Federation of Natural Language
Processing (2015), pp. 1321–1331. doi:10.3115/v1/p15-1128.

[68] YOUNIS, E. M. G., JONES, C. B., TANASESCU, V., AND ABDELMOTY, A. I. Hybrid
geo-spatial query methods on the semantic web with a spatially-enhanced index of
DBpedia. In Geographic Information Science - 7th International Conference (2012), pp. 340–
353. doi:10.1007/978-3-642-33024-7_25.

[69] ZELLE, J. M., AND MOONEY, R. J. Learning to parse database queries using induc-
tive logic programming. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference (1996),
pp. 1050–1055.

www.josis.org

http://dx.doi.org/10.5194/agile-giss-1-23-2020
http://dx.doi.org/10.1109/TASLP.2017.2788181
http://dx.doi.org/10.1016/j.eswa.2015.07.009
http://dx.doi.org/10.3115/v1/p15-1128
http://dx.doi.org/10.1007/978-3-642-33024-7_25
http://www.josis.org

	Introduction
	Related work
	Geospatial question answering
	Geospatial semantics and semantic parsing

	Methodology
	Geospatial semantic encoding and graph representation
	Generating geospatial semantic encodings through sequence labeling
	Enhanced semantic parsing for GSG
	From GSG to SPARQL queries

	Experiments and results
	Experimental setup
	Semantic encoding
	Semantic graph generation
	Query generation

	Evaluation metrics
	Results

	Discussion
	Drawback of the pipelined method
	Machine learning vs. rule-based approach

	Conclusions and future work

