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COMMUNITY ACTIVITY: WORKSHOP REPORT

Towards a computational
transportation science

Summary: This report of a community activity, a Dagstuhl Seminar earlier in 2010, pos-
tulates the need for a computational transportation science, as the science behind intelligent
transportation systems. In addition to the argument for establishing a discipline, we present
a first research agenda for computational transportation science.

1 An emerging discipline

In the near future, vehicles, travelers, and the transportation infrastructure will collectively
have millions of sensors that can communicate with each other. This environment will
enable numerous new applications and dramatic improvements in the performance of
existing applications. Due to their distributed and mobile nature, future transportation sys-
tems may become the ultimate testbed for a ubiquitous (i.e., embedded, highly-distributed)
and sensor-laden computing environment of unprecedented scale.

This field is currently subsumed by intelligent transportation systems, or ITS. However,
the question arises whether behind intelligent transportation systems we also need a science
(for a similar discussion see [2]). The paradigm shifts witnessed in technical possibilities—
for example, from centralized to distributed or decentralized computing, from carefully
managed authoritative data to massive real-time data streams of unknown quality—may
require new scientific foundations. More and more aspects of transportation science require
sophisticated computational methods to deal with the complexity of dynamic environ-
ments. We argue that a better interface between transportation science and computer and
information science is needed. The communication and exchange between these scientific
communities would improve, but there are also shared common themes and long-term
research questions. Around these core research themes we define a new discipline: compu-
tational transportation science.

Computational transportation science (CTS) concerns the study of transportation sys-
tems where people interact with information systems (e.g., interfaces for driver assistance,
or integrated transport information); where systems monitor and interpret traffic (e.g., min-
ing for activity patterns, or crowd-sourcing to monitor events); or where systems manage
the traffic (e.g., control of trafficflow at traffic lights, or toll management). CTS inherits from
computer science the aspects of distributed and decentralized computing and spatiotem-
poral information processing, and from transportation science the aspects of transportation
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control and management. The discipline goes beyond vehicular technology, and addresses
pedestrian systems on handheld devices, non-real-time issues such as data mining, as well
as data management issues above the networking layer. CTS studies how to improve the
safety, mobility, efficiency, and sustainability of the transport system by taking advantage
of information technologies and ubiquitous computing. In particular it needs scholars and
practitioners that maintain a body of knowledge and push forward an agenda that is
deeply rooted in both established disciplines. We are also the first to admit that drawing the
lines between the established and the emerging discipline is to some extent arbitrary. The
intention of claiming an emerging discipline is by no means exclusive or divisive; rather it
is to draw together work that is otherwise disconnected, and to foster research in this area
through recognition. In all the examples above, and in the research agenda below, there
exists research that is already underway.

In this way, CTS becomes the science behind ITS. Academic ITS communities, such as
in the IEEE ITS Society (founded 2005), already interpret the “S” as science, not systems
(otherwise they would not pass scientific peer review). However, the scientific discipline
behind ITS cannot be named intelligent transportation science in analogy to ITS—there is
no such thing as an “intelligent science,” and then there is also an established discourse in
artificial intelligence whether machines can be intelligent. So “computational transporta-
tion science” seems to say it all.

2 History

Computational transportation science has made its first steps of consolidation. A PhD
program on the subject, funded by the National Science Foundation, was established at the
University of Illinois at Chicago in 2006. Two international workshops on CTS were held
(2008 in conjunction with the 5th Annual International Conference on Mobile and Ubiquitous
Systems, and 2009 in conjunction with the 17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems). A third workshop was held in conjunction
with the 18th ACM SIGSPATIAL International Conference in 2010. With the first workshop
appeared a preliminary publication exploring a research agenda in this area [1]. Then a
Dagstuhl Seminar on computational transportation science was held in 21–26 March 2010
to characterize the discipline and identify its research agenda. The seminar was attended
by 25 invited researchers from USA, Australia, Germany, Belgium, and Switzerland, with
nationalities also from China, India, Greece, and former Yugoslavia. This report presents
the highlights of this Dagstuhl Seminar. Major steps at the seminar have been:

• agreeing on a collaborative definition of CTS, vision of CTS, and core research agenda
for CTS;

• setting up a Wikipedia entry for the definition and vision1;
• setting up a webpage as a bulletin board for the growing community2;
• preparing and holding the third international workshop on CTS in conjunction with

ACM SIGSPATIAL GIS 2010;
• engaging with funding bodies promoting CTS as a discipline (outreach);
• establishing collaboration by developing some larger joint research project proposals;
• publishing the (first) core research agenda via this report.

1http://en.wikipedia.org/wiki/Computational transportation science, last accessed 5 June 2010
2http://www.ctscience.org/, last accessed 5 June 2010
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3 Core research agenda of CTS

A discipline is, among other properties, characterized by a common core research agenda.
Computational transportation science must have some underlying long-term fundamental
research problems to distinguish it from its application area, ITS. ITS, in comparison, has
defined several research and development agendas that are typically short-term, such as
the US DOT’s strategic ITS plan [7].

The following research agenda is the outcome of the discussion of the Dagstuhl Sem-
inar on computational transportation science. As such it is preliminary and biased by the
composition of the participants. Nevertheless it demonstrates vision and need for this dis-
cipline. This preliminary agenda is structured into five sections: applications, knowledge
discovery, decentralized computing, social computing, and societal issues.

3.1 Applications

As the name “computational transportation science” indicates, important aspects are com-
putational and algorithmic aspects in CTS. The challenges lie in the diversity of sensors
and thus data gathered in different spatial, temporal, and thematic resolution. The high
volume demands for adequate information reduction for processing. One way to solve it
is to exploit the principle of locality, i.e., the fact that information is mainly relevant locally
and thus can also be processed locally and need not be communicated and processed on a
central server. This leads to concepts of decentralized and distributed processing.

The applications described below rely not only on the fact that travelers are provided
with information; as travelers are equipped with sensors capable of acquiring information
of the local environment, travelers also act as data providers. This leads to a highly dynamic
map of the environment that can be exploited in numerous ways. On the one hand, the
technology provides real-time data and thus can be used for dynamic traffic assignment;
on the other hand, the technology can also enhance the perception range of individuals and
allow them to “look around the corner,” or to “look through the cars in front of them.” An
additional important benefit is the possibility to augment the environmental information
with virtual information about the infrastructure. In this way, virtual traffic lights or virtual
lane assignments can be realized to allow for a flexible traffic management.

Not only the data can be shared, but also the transportation resources can be shared.
This is already the case for the road network and for public transportation. However,
sharing can also be envisaged for other vehicles, like private cars.

The applications are driven by different factors:

• The ever increasing traffic demand leading to congestion, with dramatic effects on
public safety, the environment, and the economy due to time spent in traffic jams.

• Real infrastructure is expensive and laborious to maintain; furthermore, it is ageing
and has to be replaced by modern concepts and systems.

• Cars and travelers are increasingly equipped with sensors which can—among other
things—capture information about themselves and about the local environment. This
rich data source can be exploited.

In the following, some future applications are described:

1. Shared transportation resources: If all traffic modes are considered (including private
traffic), a better exploitation of the resources is achieved, with several benefits for the
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users (reduced prices), the infrastructure (less congestion), and as a consequence also
the environment (less pollution).

2. Collaborative travelling: Collaboration can be used for platooning: the virtual cou-
pling of vehicles to form larger units like virtual trains. These structures can get prior-
ities, e.g., when crossing junctions. Within a platoon, autonomous driving is possible.
Further, there are opportunities for more adaptive traffic management depending on
the current traffic situation (e.g., intersection negotiation and intelligent traffic lights).

3. Physical infrastructure is replaced by virtual infrastructure: Virtual infrastructure can
offer several advantages over ageing and expensive to maintain physical infrastruc-
ture. For example, virtual lanes can compensate for different traffic volume during the
day/week. Virtual traffic lights and virtual signs may be possible, as well as transient
and ad-hoc warnings, like construction sites, aquaplaning, or slippery roads.

4. Driver assistance: Drivers can be warned of risks in their local environment or when
risking to leave their lane. Furthermore, drivers’ visibility range can be expanded by
providing up-to-date information from areas that are currently invisible.

5. Evacuation planning: Highly temporal information is provided to support and cali-
brate simulations, with the objective of emergency preparedness.

6. Autonomous driving: As a long-term goal, highly dynamic maps of the environment
have the potential to support autonomous driving.

7. Dynamic road pricing: Knowledge about the current usage of roads can be used to
manage traffic, e.g., by reducing prices for collaboratively used cars or platoons.

8. Smart grid, electric cars: Sharing resources opens the way to extend the flexibility
of using and sharing electric cars, e.g., by dynamic planning of the electric grid re-
sources, and of routes by considering charging facilities.

9. Road and traffic planning: Road and traffic planning can be greatly enhanced by
precise, high resolution travel information, which leads to adaptive traffic systems.
For example, the road visibility, precipitation, and pavement condition information
can be provided at high spatial resolution.

In general, the major benefits and expected properties are robustness (due to high redun-
dancy of information), resilience (ability to recover after failure), reliability, and timeliness,
which is relevant both for offline and online applications described above.

3.2 Knowledge discovery, filtering, and visualization

In order to be efficient, safe, and environmentally friendly a traveler must be cognizant
of their inherently dynamic surroundings both through their own sensing systems and by
communicating with other travelers and systems. At present travelers gain most of their
situational awareness from their innate sensors (eyes, ears, etc.) perhaps augmented by
delayed reports from the radio or the web.

Thus it is important to discover in a timely fashion additional information that can
augment the innate sensors. Consider for example the query: What are the expected traffic
conditions on I298 at Ontario over the next hour? This query can be answered by a server
that stores historical information; but additional information may be available on the web,
e.g., the weather and special events such as a ball game that starts at the time. In this case
it is not even clear what data and web sites are relevant to the query.

It will not be long, however, before the traveler will be inundated with real-time in-
formation coming from all distance scales over soon-to-be ubiquitous always-on wireless
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networks. Prioritization of messages will be critical. Hence, knowledge discovery, filtering,
and visualization form important research challenges. There is a need to devise mecha-
nisms that can assist in making sense of the huge volumes of heterogeneous and distributed
data in particular decision making contexts. Some challenges are:

1. For the car driver, the vehicle itself will not only be aware of the vehicles around it,
due to a plethora of on-board sensors (such as radar and computer vision systems),
but also of their intentions through constant DSRC (dedicated short-range commu-
nications) exchanges. Road signs will become redundant as the data is sent directly
to the vehicle. Speed limits will be mandatorily controlled to increase the safety and
efficiency of roads. Such a detailed and consolidated picture of the local environment
around the vehicle has the potential to reduce the number and severity of collisions
and so increase traveler safety. Others, such as pedestrians and cyclists, will be sim-
ilarly equipped, communicating constantly with nearby vehicles and travelers. Thus
the safety of even the most vulnerable road users will be enhanced.

2. In large cities and on congested roads the data density will be vast. For individual
travelers, and the devices and systems that are assisting them in making a journey,
only a small fraction of the received data will be relevant (and even less will be useful)
and some form of stream processing will be necessary just to prioritize the messages
in order of immediacy and relevance let alone acting on their content. That is not
to say that any of the data is useless. Indeed, it contains trends and anomalies that
are useful for planning not just the next trip but also the transportation capacities
required in the future. Extraction of these trends and anomalies must be automated
and conveyed to the relevant user in an easily understandable form.

3. Since there is no guarantee that the data available to a traveler are of useable quality or
even available when needed, filling the spatial and temporal data gap is a challenging
issue. Is it meaningful to fill the gaps with data from yesterday or even a minute ago?
Can statistical machine learning techniques such as support vector regression help?
The answers are not clear and must depend on what the data is to be used for. After
all a bus timetable is simply a prediction of often dubious reliability.

4. Visualization of the huge, multi-dimensional data sets generated will not be easy.
Many users will have their own requirements and will want to construct queries and
visualize the results. It is unlikely that the mobile device of an individual user will
have the computational power or storage for such a task. Will cloud computing come
to the rescue? Will peer-to-peer systems help with data storage and download? The
physical presentation of the data is also an issue. An in-vehicle display must not be
too obtrusive or interfere with the driver’s ability to control the vehicle (at least until
the vehicle is fully autonomous). Questions of relevance, urgency, and safety need to
be addressed.

There are numerous unanswered questions raised in the paragraphs above. They are po-
tentially solvable in isolation but all the possibilities will only be leveraged through unified
study. CTS is aimed at this broad field.

3.3 Decentralized computing

While applications are concerned with what data is relevant to answer a particular query,
decentralized computing is concerned with where this data resides and how to access this
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data. First we will explain what these questions mean in the CTS environment, and then
why these questions are different than the ones answered by traditional DBMSs.

Consider for example the query: What is the average speed of traffic a mile ahead of
me? Sometimes the query can be posed to a central server, but sometimes a server with this
information is unavailable (e.g., because the query pertains to a congested side street that
is not instrumented with speed sensors), and the query needs to be answered by polling
the vehicles ahead. However, the network identities of these nodes (the vehicles) are not
known. Thus, for this query it is not known where the data resides, and how to get to it.
The answer in this case may be to use short-range wireless communication such as WiFi
or DSRC to disseminate the query to neighboring nodes transitively. In other words, the
limited transmission range of the network is used to compensate for the lack of knowledge
of node identity.

These questions are not addressed by traditional DBMSs. The data integration problem
studied by the database research community assumes that the data is always available, but
the integration part is the problematic part. In distributed databases it is assumed that there
are directories that map data to network identities of computers that store the data. Such
directories are appropriate for some of the data that pertains to the query, but certainly not
to queries that are processed by polling other vehicles.

The research challenges in decentralized computing are:

1. Modeling and representation of highly heterogeneous data, including: the context
dependency of data and the reconciliation in different contexts; the (semantic) inter-
operability; dynamic management of interoperability; and data warehousing.

2. Methodologies/tools to orchestrate and control the information flow in and across
infrastructure networks, including: quality of data guarantees and control of local or
partial knowledge, and quality measures for cross-layer execution of decentralized
algorithms and data integration; satisfying resource constraints such as bandwidth,
energy limits, or computational capabilities; aiming for global optimization in trans-
portation from local clusters and local knowledge.

3. Novel information-theoretic formalisms and measures for complexity and efficiency,
for example, data freshness/staleness, communication costs, and transitions among
different levels of hierarchical decentralization.

4. Data reduction and aggregation, for example, in the context of streaming, storage, and
management across hierarchical layers needs to be addressed, where the structure of
the different layers can evolve or change over time.

3.4 Social computing

Social computing and information processing taps into the wisdom of crowds [6], and relies
on the (ubiquitous) connectedness and communication ability of the members forming
the society. Provided such infrastructure exists, cooperation in terms of computing and
information processing becomes feasible and forms new research questions [4].

While social computing is making its way into many disciplines, it is obvious how real-
time social interaction between mobile and stationary individuals (people, vehicles, goods,
and infrastructure) can improve transportation. From a state where every individual is act-
ing autonomously in isolation, or with minimal (visual) interaction with their environment,
it is quite a paradigm shift to think of transportation as an interconnected, communicating,
and cooperating complex system (e.g., [5]).

www.josis.org

http://www.josis.org


TOWARDS A COMPUTATIONAL TRANSPORTATION SCIENCE 125

Such a paradigm shift brings up research questions in multiple dimensions:

1. Data collection. How can alternative data collection methods to the traditional survey-
based collection assist in computational transportation science? This involves direct
and indirect collection methods such as real-time sensing or accessing pools of shared
data, and issues of data integration and exchange.

2. Data sharing. How can we ensure a sustainable data flow? Why do individuals share
data, what are the incentives? What type of data will be captured and shared, and
what type of data needs protection?

3. Data quality assurance. How can social network based data be calibrated, or errors
identified? How can trust and reliability inform an error propagation process?

4. Real time situational awareness and decision support. How can data be transformed
into information, and provided where and when needed for decision support?

5. Privacy aspects. How can privacy be protected when spatial information provides
local information about the user? Which computational methods can be devised in
order to blur the local information and at the same time still keep it useful? It should
also be noted that with the ever decreasing cost of storage it may well be practical
to maintain all the data forever. But who controls it? Should an arbitrary person or
agency be able track an individual’s movements? Legislation may mandate privacy
but can’t guarantee it. Also data privacy impacts usability. For example adding noise
to the position of a vehicle would render the safety aspects of DSRC useless. Remov-
ing personal identifiers is one possible solution, but is it the best?

Ultimately it is the traveler who specifies the origin and destination of their trip. Transport
must be traveler-centric and any system (or combination of systems) that ignores this sim-
ple fact will have a limited life. It is the socioeconomic outcomes that applications of CTS
will generate that will really count in the long run.

Abstracting from social computing, other societal issues of computational transporta-
tion science come up with the involvement of individuals in the information processing
chain. These individuals act and interact in a larger societal context, involving also govern-
ment (transportation authorities), stakeholders, and transportation providers. These groups
have different roles and responsibilities, but also different values and interests.

Research questions in this area concern the complex decision making processes, eco-
nomic models including novel fare models (e.g., e-tolling, e-ticketing, ride sharing, virtual
fencing), and also the demands of the community for privacy.

4 Outlook

A discipline is only as good as its academic community. If this paper finds your support or
meets your interests you are cordially invited to participate and engage. The infrastructure
set up so far is a beginning but requires your collaboration, be it the Wikipedia entry,
the CTS webpage, or the CTS workshop series. These are all small seeds that—if they
grow—can lead to conferences and journals on CTS, not only in the content but also in
name. Finally, the community should shape its own academic programs or introduce core
subjects on computational transportation science into the programs on transport engineer-
ing, electrical engineering, software engineering, and geographic information engineering.
The spread demonstrates the interdisciplinarity of computational transportation science,
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illustrates that engineering problems do not present themselves any longer wholly con-
tained in one traditional discipline, and supports the fundamental concern that engineering
disciplines have grown to be too narrow [3].
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