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Abstract: The systems community in both academia and industry has tremendous success
in building widely used general purpose systems for various types of data and applica-
tions. Examples include database systems, big data systems, data streaming systems, and
machine learning systems. The vast majority of these systems are ill equipped in terms
of supporting spatial data. The main reason is that system builders mostly think of spatial
data as just one more type of data. Any spatial support can be considered as an afterthought
problem that can be supported via on-top functions or spatial cartridges that can be added
to the already built systems. This article advocates that spatial data and applications need
to be natively supported in special purpose systems, where spatial data is considered as a
first class citizen, while spatial operations are built inside the engine rather than on-top of
it. System builders should consider spatial data while building their systems. The article
gives examples of five categories of systems, namely, database systems, big data systems,
machine learning systems, recommender systems, and social network systems, that would
benefit tremendously, in terms of both accuracy and performance, when considering spatial
data as an integral part of the system engine.

Keywords: spatial databases, big spatial data, spatial machine learning, recommender sys-
tems, social networks, location-based services

1 Introduction

Spatial data and applications have been ubiquitous. For example, ride sharing services
(e.g., Uber, Lyft, Didi, and Ola) have revolutionized the transportation sector relying on the
ability to locate riders, match them with nearby available drivers, and track their routes all
the way. As an indication of its ubiquity, Uber had close to two billion rides in Q4 2019 [67].
Mapping services, including routing and navigation, has also been ubiquitous in our daily
lives. As of April 2018, Google Maps and Waze had more than 150 and 25 Million users,
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respectively [66]. Digital contact tracing [10], which relies on Bluetooth and GPS technol-
ogy to identify people who were in close contact to each other, has been pointed out as a
crucial application in the forefront of fighting and limiting the spread of COVID-19 [26].
Going from smart phones to larger satellite devices, a National Aeronautics and Space Ad-
ministration (NASA) archive hosts more than 33 Petabytes of public spatial data, with an
average daily production growth of 5 Terrabytes, extracted from satellite images [39]. The
unprecedented amounts of spatial data produced from various devices, including smart
phones and satellites, along with the spatial data produced from or consumed by spatial
applications, e.g., ride sharing, mapping services, contact tracing, location-based social net-
works, and location-based games call for full-fledged efficient systems and algorithms to
store, retrieve, and analyze spatial data.

Meanwhile, the systems community has been dealing with the spatial attributes of
any object as just one more attribute, with not much special support. System builders
mostly build general-purpose systems that are generic enough to handle any kind of at-
tributes. Whenever there is a pressing need for spatial data support, it is considered as
an afterthought problem that can be addressed by adding new data types, extensions, or
spatial cartridges to existing systems. This ends up in producing over-the-counter systems
that can be used by other applications, regardless of their very specific needs.

There are two arguments against designing such special-purpose systems for spatial
data and applications. First, how big is the market segment that needs spatial data support?
Second, would it be really different from thinking of spatial data support as an afterthought
problem? For the first argument, we have already mentioned several applications with a
huge market share. For the second argument, we would strongly argue that things would
be really different if we start thinking spatial when building our systems. This article will
list few examples of systems that would look really different if we start building them while
thinking spatial.

2 Classical example: spatial databases

One can easily use a database management system (DBMS) to support a nearest-neighbor
query through a simple SQL query that selects object ID from the table of objects, ordered
by distance, and limit one on the answer. Yet, this is extremely inefficient due to the need of
calculating the distance between the user location and each object in the table and sorting
the results. Commercial DBMSs may not care much about this as having a nearest-neighbor
query is not a common thing, hence its performance does not hurt much.

Thinking spatial, and considering the ubiquity of spatial data and applications in which
nearest-neighbor queries are among the most important ones, we would consider having a
specially designed nearest-neighbor operator that can be added to a query plan with other
query operators. This also means modifying the query optimizer to consider optimizing
query plans with the nearest-neighbor operator, as well as having new spatial index struc-
tures to support that important query. As a classical example, there have been tremendous
efforts to build spatial databases [28, 47, 62] by enriching the database engine with spatial
data types [29], spatial index structures [27], spatial query operators [4], and spatial query
optimizers [5]. Such efforts were instrumental in integrating spatial data support in major
commercial database system, e.g., Oracle [43] and Microsoft SQL Server [25].
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3 Thinking spatial in big data

Various applications and agencies need to process unprecedented amounts of spatial data,
produced from several devices such as smart phones, space telescopes, and medical de-
vices. For example, the Blue Brain Project [38] studies the brain’s architectural and func-
tional principles through modeling brain neurons as spatial data [68]. Epidemiologists use
spatial analysis techniques to identify cancer clusters [42], track infectious disease [6], and
drug addiction [69]. Meteorologists study and simulate climate data through spatial data
management and analysis [24]. News reporters use geotagged tweets for event detection
and analysis [55]. Unfortunately, the immense need to manage big spatial data was ham-
pered by the lack of specialized systems, techniques, and algorithms to support such data.
While big (non-spatial) data is well supported with a variety of distributed systems and
cloud infrastructure (e.g., Hadoop [30] and Spark [64]), none of these systems or infras-
tructure were designed to support spatial data. The only way to support big spatial data
in such systems is to either treat it as non-spatial data or to write a set of on-top functions.
However, doing so does not take any advantage of the distinguished properties of spatial
data, hence resulting in sub-par performance.

Thinking spatial, one would need to follow a systems approach by providing a native
built-in support for spatial data inside the core engine of big data systems. This will allow
programs and frameworks running on top of the spatially-aware systems to make use of its
embedded spatial functionality. Recent systems that strived for this goal had tremendous
success in achieving orders of magnitude better performance than general-purpose big data
systems. Such systems include Hadoop-GIS [2] and SpatialHadoop [17] that injected spatial
awareness in the Hadoop big data system [30], GeoSpark [71] and Simba [70] that injected
spatial awareness inside Spark [64], and Sphinx [23] that injected spatial awareness inside
Impala [31]. See [19] for a comprehensive survey.

To clarify how these systems achieve their performance, we will take SpatialHadoop as
an example. SpatialHadoop [17, 18], available as free open-source [65], is a full-fledged
MapReduce framework with native support for spatial data. SpatialHadoop is a com-
prehensive extension to Hadoop [30] that injects spatial data awareness in each Hadoop
layer, namely, the language, storage, MapReduce, and operations layers. In the language
layer, SpatialHadoop employs the Pigeon language [16], which is an extension of the Pig
Latin language [40], traditionally used with Hadoop. Pigeon is compatible with the Open
Geospatial Consortium (OGC) standard which makes it easy to learn and use for users
who are familiar with existing OGC compliant tools such as PostGIS. In the storage layer,
SpatialHadoop provides standard spatial indexes, such as grid and R-tree, which are used
to store the data in an efficient way in the Hadoop Distributed File System (HDFS) [14].
Indexes are organized in two-layers, one global index that partitions data across nodes,
and multiple local indexes to organize records inside each node. The MapReduce layer in
SpatialHadoop modifies the original Map-Reduce functionality [12] to balance the query
workload over distributed nodes, taking into account the spatial distribution of data and
queries. In the query processing layer, SpatialHadoop encapsulates basic spatial opera-
tions, range query, nearest-neighbor, and spatial join [49], as well as a suite of fundamental
computational geometry operations [15, 34]

Injecting spatial awareness in big spatial data systems has enabled more spatial func-
tionality to be supported. In case of SpatialHadoop, this includes: (a) adding a visualization
layer that provides efficient algorithms to visualize big spatial data [21,22]. SpatialHadoop
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supports single level images, which are generated at a fixed resolution, and multilevel
images, which are generated at multiple resolutions to allow users to zoom in, (b) provid-
ing a backbone support for applications that manage and visualize satellite data [20], and
(c) supporting spatio-temporal data and applications [3].

4 Thinking spatial in machine learning

Data scientists and developers have been spending significant efforts applying machine
learning techniques on their massive data. However, the skills and efforts needed to deploy
such techniques become a major blocking factor in having a wide deployment of machine
learning. Markov Logic Network (MLN) [13, 46] was recently introduced to reduce this
gap. In particular, MLN is a language representation that combines first-order logic with
probabilistic models, and is empowered by machine learning modules that detect patterns
and conclude inference. This had a significant impact on the wide deployment of machine
learning techniques in various applications, including knowledge base construction [48],
data cleaning [44], and information extraction [32], among others. However, MLN is obliv-
ious to spatial data and its distinguishing characteristics, which results in missing impor-
tant results and having less accuracy in important MLN-based applications that can take
advantage of the spatial properties of spatial data.

Meanwhile, as mentioned in Section 3, there is a recent tremendous increase of big
spatial data and applications. As a result, various applications and agencies need to take
advantage of the recent advances of Markov Logic Networks (MLN) and machine learning
techniques to analyze the unprecedented amounts of spatial data. One obvious way to start
with is to use the most advanced MLN technology as is with spatial data. While this would
work to some extent, it will have a sub-par performance. The main reason is that MLN (and
its machine learning techniques) do not have a native support for spatial data. The only
way to support spatial data in MLN is to simply ignore its spatial features and deal with
it as non-spatial data. However, doing so does not leverage or consider the distinguished
properties of spatial data, hence resulting in sub-par performance.

Thinking spatial, one would need to adopt machine learning techniques for big spatial
data and applications. This includes going for two orthogonal, but related, directions. First
injecting the spatial awareness inside machine learning techniques and applications (e.g.,
knowledge base construction), which will result in a higher accuracy for such applications.
Second, taking advantage of the recent advances in machine learning techniques, in par-
ticular Markov Logic Network (MLN), to boost the usability, deployment, scalability, and
accuracy of long lasting spatial data analysis techniques.

Along the first direction, knowledge-base construction would be a prime example.
Knowledge-base construction has been an active area of research over the last two decades
with several system prototypes coming form academia and industry, along with vital appli-
cations. DeepDive, an MLN-based system, has emerged as one of the most popular prob-
abilistic knowledge base construction systems [48], applied in vital applications, including
geology [72] and paleontology [41]. Unfortunately, probabilistic knowledge base systems
do not fully utilize the underlying spatial information, which results in less accuracy in
the factual scores. Thinking spatially, the Sya system [50, 51] came as the first spatial prob-
abilistic knowledge base construction system, based on Markov Logic Networks (MLN).
Sya injects the awareness of spatial relationships inside the MLN grounding and inference
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phases, which are the pillars of the knowledge base construction process, and hence results
in a better knowledge base output. Sya provides a simple spatial high-level language, a
spatial variation of factor graph, a spatial rules-query translator, and a spatially-equipped
statistical inference technique to infer the factual scores of relations. In addition, Sya pro-
vides an optimization that ensures scalable grounding and inference for large-scale knowl-
edge bases.

Along the second direction, same as MLN made it possible for data scientists and de-
velopers to embrace the difficulty of deploying machine learning techniques, introducing
Spatial Markov Logic Networks (SMLN) can act as a backbone infrastructure to support
long lasting spatial analysis techniques that lack scalability as well as suffer from diffi-
culty of deployment. In particular, Flash [53] is introduced as a framework for generic and
scalable spatial probabilistic graphical modeling (SPGM). SPGM is an important class of
spatial data analysis that provides efficient probabilistic graphical models for spatial data.
Existing SPGM tools are neither generic nor scalable when dealing with big spatial data.
Flash exploits Markov Logic Networks (MLN) to express SPGM as a set of declarative log-
ical rules. In addition, it provides spatial variations of the scalable RDBMS-based learning
and inference techniques of MLN to efficiently perform SPGM predictions. Applications of
Flash include supporting scalable and accurate execution of autologistic spatial regression
that predicts missing values [52, 54].

5 Thinking spatial in recommender systems

Recommender systems make use of community opinions to help users identify useful items
from a considerably large search space. For example, recommender systems have success-
fully been used to help users find interesting books and media from a massive inventory
base (Amazon [35]), news items from the Internet (Google News [11]), and movies from
a large catalog (Netflix). The technique used by many of these systems is collaborative
filtering [1, 45], which analyzes past community opinions to find correlations of similar
users and items. Community opinions are expressed through explicit ratings represented
by the triple (user, rating, item) that represents a user providing a numeric rating for an
item. Unfortunately, recommender systems are not friendly to spatial operations. For ex-
ample, one may want to have recommendations on a restaurant in a certain area, or a tourist
wants to get recommendation of items preferred by locals, e.g., ”When in Rome, do as the
Romans do”. Trying to get such spatial recommendations from existing recommender sys-
tems would be just a spatial filter on top of existing systems, which is not accurate as this
would lose the essence of the collaborative filtering method.

Thinking spatial, the LARS system [33, 60], a Location-Aware Recommender System,
injects the spatial awareness inside the core functionality of collaborative filtering rather
than being an on-top filter. In particular, LARS goes beyond the rating triple (user, item,
rating), which forms the basis of current collaborative filtering methods to a new taxonomy
of location-based ratings: (1) Spatial ratings for non-spatial items, represented as a four-tuple
(ulocation, user, rating, item); for example, a user located at home rating a movie, (2) Non-
spatial ratings for spatial items, represented as a four-tuple (user, rating, ilocation, item); for
example, a user with unknown location rating a restaurant, and (3) Spatial ratings for spatial
items, represented as a five-tuple (ulocation, user, rating, ilocation, item); for example, a user
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at office rating a restaurant. With this taxonomy, traditional rating triples can be classified
as non-spatial ratings for non-spatial items.

With this new taxonomy of location-based ratings, LARS provides scalable query pro-
cessing that exploits user rating locations through user partitioning; a technique that in-
fluences recommendations with ratings spatially close to querying users in a manner that
maximizes system scalability while not sacrificing recommendation quality. Meanwhile,
LARS exploits item locations using travel penalty; a technique that favors recommenda-
tion candidates closer in travel distance to querying users in a way that avoids exhaustive
access to all spatial items. LARS can apply these techniques separately, or together, de-
pending on the type of available location-based rating. For system deployment, LARS is
realized inside the database engine [56, 61].

6 Thinking spatial in social network

Social networking systems, e.g., Facebook and Twitter, are among the most popular web
services nowadays. A common functionality shared by such web services is the news
feed functionality, where users of social networks receive a feed of news/posts from their
friends/groups of interest [63]. Due to the large volume of related news/posts for each
user, existing news feed systems opt to select a subset of k relevant news either based on
the message timestamp, i.e., most recent k messages, or based on some weighting criteria.
Unfortunately, news feed systems mostly ignore the spatial aspect of related messages, and
hence, users may miss important messages that are spatially related to them either because
they are not so recent or do not make the weighting criteria.

Thinking spatial, one would like to see news feed more related to the current spatial
location. For example, let’s say that one of my friends has visited Istanbul and posted
something about it. I saw the post, and ignored it as it does not really matter to me now,
being in Minneapolis. Few months down the road, I am in Istanbul, looking at my news
feed. The most important post I would like to see now is the one that was related to Is-
tanbul and posted few months ago. Yet, as the social network is not designed for spatial
awareness, it could not recognize that this one is much more important to me now than
other posts.

The Sindbad system [57,58] is a prototype for a location-based social network that each
post (a) is associated with a location, and (b) has spatial domain of interest. Sindbad sup-
ports three new services beyond traditional social networks, namely, location-aware news
feed [8], location-aware ranking [7], and location-aware recommender [9,59]. These new services
not only consider social relevance for its users, but they also consider spatial relevance.
Once a Sindbad user logs on to the system, a location-aware news feed query is triggered
to retrieve the relevant news feed, i.e., messages posted by the user’s friends that have spa-
tial extents covering the location of the requesting user. The output of the location-aware
news feed module will be processed further by the location-aware ranking module to get
only the top-k news feed based on the spatial and social relevance, which will be returned
to the user as the requested news feed. Sindbad users can also request spatial recommenda-
tions based on: (a) user location (if available), (b) item location (if available), and (c) ratings
previously posted by either the user or the user’s friends.
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7 Conclusion and other spatial thoughts

This paper makes the case for: (a) using general-purpose systems, where spatial operations
are considered as an after-thought problem and supported by ad-hoc on-top functions,
always results in sub par performance when dealing with spatial data and applications,
and (b) the need to build special purpose systems, where spatial attributes are considered
first class citizens and spatial operations are taken into account while building the sys-
tem. Examples were given for various systems, including database systems (Section 2),
Big Data systems (Section 3), machine learning systems (Section 4), recommender systems
(Section 5), and social networks (Section 6).

The list of systems that can be redesigned to support spatial data can go on and on to in-
clude systems designed for microblogs analysis, crowd sourcing, data streaming, data pri-
vacy, data cleaning, and data integration, among others. For example, in microblogs anal-
ysis, the TAGHREED system [36, 37] goes beyond the idea of building a general-purpose
index structure and query engine to building spatial indexing and spatial query engines
for microblogs. In crowdsourcing, many of the tasks are spatially oriented, where the loca-
tion of the worker plays an important role in adequately performing the task, e.g., rating
a restaurant would be preferred to be done locally, geolocating an object that we have a
vague idea on its whereabouts would need to be solved by people living around that ob-
ject. Also, some areas in the world would have more expertise in some jobs than others,
e.g., translation and sport-related tasks. In general, having the locations of workers ahead
in the equation would change the way that we assign workers to crowdsourcing tasks to
achieve better quality.

And, the question comes again. Is it really worth building such systems while Thinking
Spatial? I would say definitely yes, it worth it. Spatial information is really special, and it
should not be considered as few more attributes.
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