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Abstract: Spatial information science has a critical role to play in meeting the major chal-
lenges facing society in the coming decades, including feeding a population of 10 billion
by 2050, addressing environmental degradation, and acting on climate change. Agriculture
and agri-food value-chains, dependent on spatial information, are also central. Due to agri-
culture’s dual role as not only a producer of food, fibre, and fuel but also as a major land,
water, and energy consumer, agriculture is at the centre of both the food-water-energy-
environment nexus and resource security debates.

The recent confluence of a number of advances in data analytics, cloud computing, re-
mote sensing, computer vision, robotic and drone platforms, and Internet of Things (IoT)
sensors and networks have lead to a significant reduction in the cost of acquiring and pro-
cessing data for decision support in the agricultural sector. When combined with cost-
effective automation through development of swarm farming technologies, these technolo-
gies have the potential to decouple productivity and cost efficiency from economies of size,
reducing the need to increase farm size to remain economically viable.

We argue that these pressures and opportunities are driving agricultural value-chains
towards high-resolution data-driven decision-making, where even decisions made by
small rural landowners can be data-driven. We survey recent innovations in data, es-
pecially focusing on sensor, spatial, and data mining technologies with a view to their
agricultural application; discuss economic feasibility for small farmers; and identify some
technical challenges that need to be solved to reap the benefits. Flexibly composable in-
formation resources, coupled with sophisticated data sharing technologies, and machine
learning with transparently embedded spatial and aspatial methods are all required.
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1 Introduction

Several of the 17 UN sustainable development goals, including zero hunger; decent work
and economic growth; industry; sustainable cities and communities; responsible consumption and
production; and life on land require very significant changes to global agriculture. The food
sector accounts for around 22% of greenhouse gas emissions while 26% of workers are en-
gaged in agriculture and 821 million people are undernourished [50]. While agricultural
sustainability has traditionally focused on on-farm efficiency in food and fibre production,
this has shifted to integrated value-chain approaches which address the full life-cycle im-
pacts of production, transport, logistics, sales, consumption, and disposal [37].

In developed nations industrialization, technological advancement, and mechanization
have led to agriculture becoming more capital-intensive. However, until recently it has re-
mained information-poor. Decision-making has traditionally relied on historical narrative
developed over generations, peer-to-peer local farmer networks, state-supported education
and extension programs, private sector advisor services, personal connection to the land-
scape, intuition, and subjective visual assessment. While farming remains a labor-intensive
occupation, it is becoming a knowledge-intensive industry [49]. There has also been a
strong trend towards specialization, intensification, and consolidation into larger farming
enterprises to achieve economies of size and scale, with better knowledge management and
technology to increase efficiency and reduce the cost of production [17]. However, consol-
idation has come at the cost of decline in the number and value of of smaller commercial
farming enterprises and, in-turn, the decline of rural and regional services and economies.

As industry moves into the next wave of agricultural innovation “Agriculture 4.0”, the
confluence of a number of advances in data analytics, cloud computing, remote sensing,
computer vision, robotics and drone platforms, and Internet of Things (IoT) sensors and
networks, are poised to reshape agricultural production. Progress in the field of precision
agriculture over the past three decades has allowed farmers to increase their productiv-
ity and reduce costs based on insights drawn from the analysis of spatial and biophysical
data (e.g., [10, 29]). However application of these advances remains capital-intensive, as
they have been tied to minimising cost through deployment on large and expensive ma-
chinery, to maximize the efficiency of labor units. Robotic automation and deployment
via “swarm farming” removes the need for a human operator in the machine, allowing
agricultural operations to decouple production cost efficiency from economies of size [26].
The scalable nature of swarm farming reduces the capital required to achieve production
efficiency, allowing smaller farmers to maintain their economic viability. They may also be-
come affordable for farming applications in the developing world. Deployment is reliant
on spatial information systems for navigation, robot-to-robot coordination, sensing, route
optimization, precision application of inputs, assessing and managing field heterogeneity,
and post-operational data analysis.

The rapid advancement of IoT in manufacturing and building management shows a
way forward towards an ecosystem of real time sensing, predictive analytics, and decision
making [2]. However, these developments do not immediately translate to the agriculture
sector where capital investment and access to capital is comparatively lower than other
sectors and labor is comparatively inexpensive in the developing world. In developed
nations farmers operating smaller rural holdings are often willing to bear a lower return
on their capital investment in their land and business to sustain their rural lifestyle and
custodial responsibility for sustainability. They may also fail to adequately value the time
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of unpaid family labor (as it does not incur an obvious cash-cost), or the opportunity cost
of other income generating activities they could be doing if they were freed from attending
to menial tasks.

Another significant barrier to agricultural application of IoT lies in the vertically-siloed
nature of typical IoT applications. Products are developing primarily in vertical markets,
such as computer-integrated manufacturing, vehicle and transportation, home and build-
ings, or healthcare, which suits the structure of the vertically-organized industries. In agri-
cultural enterprises, business operates holistically. Although the locus of control may be
limited in geographical extent, the melange of activities within the boundaries are highly
varied and variable, with seasons, market prices, short and long-range weather forecasts,
developments in technology, and consumer demand. While the market for agricultural
apps has expanded rapidly in the past 5 years, and while there are “many apps” available
to farmers, there are too many independent special-purpose apps which lack interoperabil-
ity (e.g., [31, 55]). This limits the ability to consolidate and pool the large amounts of data
being generated on-farm, and to analyse the data for valuable insights. It is imperative that
data arising from sensing services on farm equipment, for example, interoperates with data
arising from in-situ soil moisture probes together with data arising from local weather sta-
tions and remote weather forecasts, so that inferences can be made on the basis of the joint
observations. Independent apps for analysing and viewing each separately are of limited
benefit.

This drives the imperative for interoperable data-driven platforms for agricultural deci-
sion making. This in turn drives the need for flexible data-representation standards, infer-
ence systems, and visualization technologies, that permit plug’n’play components to work
together in a specific farming setting. In particular, leveraging modern sensing technology,
interoperable public open data, and pluggable machine learning technologies, it seems that
highly customized platforms for farm-scale agricultural decision making are within grasp.

2 The crucial role of data semantics

In 1999 the W3C first standardized the Resource Description Framework (RDF) [21], a graph
data model that became the underpinning layer for two decades of work on the Web of
Data, or Semantic Web. This work may be most visible today through Google’s knowl-
edge panels that provide extended information about people, places, organizations, events,
and other things, together with Web search results. The panel draws from an internal,
highly scalable knowledge graph [16], a graph database that is populated from a range of
sources, including information presented by semantic standards on Web pages. Knowledge
graphs are also used for enterprise data integration in, for example, manufacturing [38]
and agriculture [40]. A knowledge graph may incorporate other semantic languages and
knowledge representation tools developed through the W3C standards process, such as
the Web Ontology Language [53], SPARQL Protocol and Query Language [34], and Shapes
Constraint Language [19]. These platform technologies have been customized for spatial
information, too. From 2017, the first author co-chaired the Spatial Data on the Web work-
ing group, jointly established by the the OGC, the major standards body for the spatial
industry, and the W3C [47]. The Working Group aimed, among other things, to encourage
the uptake of public spatial data by prescribing approaches to spatial data publication that
make it easier for Web developers to build spatial data into applications [45, 51, 52].
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Semantic technologies also make data amenable to machine reasoning. They trace
their heritage to the AI discipline of knowledge representation but are also highly suit-
able for inductive machine learning. While agricultural research has been firmly founded
in the statistical sciences, broader machine learning research is having impact there, too
(e.g., [24, 54]). Machine learning techniques are particularly useful when (a) it is not clear
which features or relationships are driving sought-after behaviors, (b) the patterns being
sought are not well understood in terms of biophysical processes, or (c) spatial and tempo-
ral data is sparse with respect to the problem being studied and the decision being made.
Machine learning methods designed for semantic data are able to leverage expert or back-
ground data expressed in a knowledge base to assist in navigating the space of important
relationships expressed in data. And, because they express inductive hypothesizes as rules
or class expressions, they are relatively transparent about the reasons for the inferences
they make.

In earlier work, we have shown how, with semantic technologies, live sensor data
can be automatically processed by combining multiple sensor feeds in real time together
with more-slowly changing background data, to generate an alert customized for a farmer’s
needs [46,47]. Analytical processing can also be built in to the pipeline [9,11]. This approach
relies on decades of research into distributed stream management systems, but more im-
portantly uses the data integration techniques of ontology and linked data for integration of
heterogeneous data sources.

More recently, distributed streaming systems for native semantic data have been de-
veloped (e.g., [8, 25, 56]), ontologies for agriculture have become widely adopted [18],
and the well-known cross-domain ontology for sensor data [6] has become a formal stan-
dard [13,14,44]. This means that the approach of [46], that requires customized engineering
effort for wrapping and mapping sensor data, can leverage these developments for easier
on-farm implementation. We might reasonably expect, for example, that commercial agri-
cultural sensors would be semantics-powered out-of-the-box with RDF digital datasheets.

While not so rapidly-changing, large scale coverage data such as soil maps, aerial im-
agery, satellite imagery, and products derived from satellite imagery are needed at farm-
scale resolutions and currency. As they are large and rapidly updated, these are best
served through public Web architectures via dynamic queries for decision making. Con-
veniently, [3] has shown how this can be done: very large-scale satellite imagery can be
published as semantic linked-data with query-driven spatial resolution, and served for
ready integration into analytical systems, such as those that are fusing or ground-truthing
with in-situ observations.

3 Ongoing challenges for decision support

In order to properly support small-farm decision-making in a context of increasing avail-
ability and decreasing cost of IoT devices for agriculture, there are some critical problems
to solve.

Composable information resources Given the variety in both the inputs (size, landscape,
soil, climate, livestock, seeds, etc.) and outputs across the agricultural sector, there can be
no universal solution for agricultural decision support. While large scale farming enter-
prises can and do develop software customized to their needs, this is not feasible for small,
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adaptive, family farms, for whom multiple indepedent silo-ed apps are also unhelpful.
There is an urgent need for a point-and-click selection and customization capability for
farmer desktops, potentially relying on a cloud back-end for storage and computation. A
composable GUI is required that displays, not independent windows of independent data
streams, but instead customized, focused views on a linked information space. There are
existing research efforts towards this direction, such as plug’n’play sensor integration at
the back end [4, 32], cloud APIs for connecting data to analysis services including physical
models [7, 48], declarative service composition [5, 23, 27], and ontology-driven user inter-
faces at the front-end [1, 15]. Is it possible to draw these ideas together so that a farmer can
describe what they have and what they need and thereby declaratively compose the infor-
mation resources into a custom dashboard desktop? The spatial frame of the farm offers a
strong organising principle that will assist. Given the tree-structured limitation on expres-
siveness in the OWL ontology language, more expressive declarative rule languages are
likely to be needed (e.g., [28]) to interface components together. These languages will need
to be graphically editable [42] for use by farmers without training in formal declarative
languages.

Agri-food value-chain efficiency Consumers of food and fibre, produced on small farms,
are increasingly demanding clear provenance of their purchases from the farm and through
the supply chain. While research in the food industry is already leveraging semantics for
this purpose [41], there can also be direct benefit for farmers in sharing data across a data-
transparent supply chain to optimize services, logistics, and sales for major seasonal ac-
tivities including harvesting and shearing [12]. While this is already the practice for some
large scale corporately-dominated industries such as sugar cane cropping [12], the financial
benefit could instead be returned to farmers to defray on-farm costs of sensor deployment.
There may be competition barriers to sharing on-farm data amongst a local community. A
net benefit to small farmers could be returned through a rejuvenation of the once-popular
farming co-operatives, this time driven by shared data. Technically, architectures to mone-
tize data holdings delivered through integrated services have been explored [43] and this
approach may also be worth trying. Otherwise, without the clear ROI at small scale, small
farmers may miss out on the data-driven benefits and be pushed right out of the industry.

Machine learning of spatial relations In agriculture, predictions of variables such as
yield or optimal harvest date necessarily combine representations of spatial vector, topo-
logical and coverage data (e.g., respectively, paddock boundaries, paddock adjacency, rain-
fall) along with classical aspatial data (e.g., fertilization rate, water level, soil tests, pasture
species). Yet it is very early days for predictive analytics with a strong spatial component
in data or in target variables [39]. While there is a developing toolbox for learning semantic
relational models (e.g., [22,30,35]), we need to move towards methods where spatial is not
special, but where representations of spatial objects and relations are transformed to rep-
resentations where general-purpose relational methods apply, just as they do for aspatial
relations. While the semantic predicates for spatial relations are well-defined [33,52], along
with an underlying algebra (e.g., [36]) and application demands (e.g., [20]), we lack repre-
sentations of the spatial semantics in a way that is accessible to general-purpose relational
learning algorithms and to composable information resources. This is an urgent need to
bring the benefits of predictive analytics into agriculture, at any scale.
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4 Conclusion

Small-scale agriculture is desirable for its ability to contribute to international goals for
zero hunger; decent work and economic growth; industry, innovation, and infrastructure;
sustainable cities and communities; responsible consumption and production; and life on
land. Small-scale agriculture will be left behind large-enterprise agriculture if it cannot em-
ploy developing information technologies at low cost and fine-scale temporal and spatial
resolution. In turn, new spatial information technologies are needed.

We are building an experimental IoT testbed across a collection of family-run dairy
farms in the Bega Valley of New South Wales, Australia, to test our ideas.
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