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Abstract: The constant rise of urban mobility and transport has led to a dramatic increase
in greenhouse gas emissions. In order to ensure livable environments for future genera-
tions and counteract climate change, it will be necessary to reduce our future CO2 foot-
print. Spatial data science contributes to this effort in major ways, also fuelled by recent
progress regarding the availability of spatial big data, computational methods, and geospa-
tial technologies. This paper demonstrates important contributions from spatial data sci-
ence to mobility pattern analysis and prediction, context integration, and the employment
of geospatial technologies for changing people’s mobility behavior. Among the interdisci-
plinary research challenges that lie ahead of us are an enhanced public availability of mo-
bility studies and their data sets, improved privacy protection strategies, spatially-aware
machine learning methods, and evaluating the potential for people’s long-term behavior
change towards sustainable mobility.
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1 Introduction

Our world is currently facing dramatic problems, such as major effects of climate change,
spread of diseases, overconsumption of goods, a lack of universal access to quality ed-
ucation, and poverty. Although, contrary to common belief, data clearly demonstrates
that humankind—through science, reason, and humanism—has been making enormous
progress towards a better world over the course of its history, these ideals must be more
than ever defended and applied in order to solve our present problems [19].

One of the key problems, which directly and indirectly impacts many facets of our lives,
is the constant increase of urban mobility and transport. Although they have brought major
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advances to our society, mobility and transport are also main contributors of greenhouse
gas emissions. These, in turn, stand in the way of achieving several of the Sustainable
Development Goals1 as formulated by the United Nations Development Programme, such
as good health and well-being, sustainable cities and communities, or climate action.

Reducing our future CO2 footprint depends on both technological as well as behavioral
research. Spatial data science, which encompasses space and spatial data at a wider spec-
trum of scales than geographic information science [20], can contribute to this endeavor in
major ways. From a technological perspective, decarbonisation of transport will require
improved vehicle efficiency, electric vehicles relying on renewable energy sources, and
driverless cars. Vehicles can be equipped with a variety of (geo)sensors and evaluated for
efficiency within spatial networks. Electric vehicles may utilize smart charging strategies,
i.e., on the one hand consume fluctuating electricity production such as from photovoltaics,
and on the other hand recharge the grid through vehicle-to-grid applications [18]. Opti-
mizing such strategies involves sophisticated spatio-temporal mobility pattern analysis to
evaluate real-time situations but also making predictions regarding future states [4]. The
employment of autonomous vehicles can lead to an optimization of traffic and presents
significant challenges regarding positional accuracy and geo-databases [10].

Long-term decarbonisation of transport will also require that people actively make an
effort to contain demand and shift to lower emission transport modes [3]. Mobility pattern
analysis [29] allows to evaluate people’s transport behavior and mode choices—even in
real time—and to predict future behavior and transport network states. In addition, it
can be utilized to detect behavioral changes over time, such as people switching to more
sustainable modes of transport. Location based services [11] and other mobile technologies
support people in their spatio-temporal decision-making, potentially leading to increased
sustainability and therefore curbing greenhouse gas emissions.

2 Contributions from spatial data science

Over the last decade, spatial data science has contributed in major ways towards the goal of
making our society’s mobility sustainable. The combination of novel spatial data sources
and spatial big data [15, 22], computational methods, and geospatial technologies—also
termed geosmartness [21]—has provided researchers with great opportunities to perform
large-scale spatio-temporal analyses of mobility patterns as well as investigate people’s
decision-making behavior.

Digitalization has provided us with an unprecedented volume of movement and con-
text data, derived from GPS sensors, social networks, or mobile phone usage. The goal is
to mine these data for mobility patterns, both historically and in real-time. Evidence for
a conserved quantity of human mobility has been demonstrated as well as a correlation
between people’s location capacity and the number of their social connections [1]. Such
regularities and constraints help generating knowledge of individual and aggregated city-
wide mobility behavior [28], which can further be utilized to make predictions regarding
future states. This, in turn, facilitates the allocation of spatial resources, optimization of
transportation networks and infrastructure.

When analysing mobility data, it is important to take the internal and external context
in which people are moving into account [2, 25] because movement is always influenced

1https://www.undp.org/content/undp/en/home/sustainable-development-goals.html
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by spatio-temporal phenomena, such as weather, transportation infrastructure, or personal
time schedules. Nowadays, many different sources of context data are available at various
spatio-temporal resolutions, and cities, such as London, Singapore, New York, or Zurich,
publish them on open data platforms.2 Volunteered geographic information [9] projects,
e.g., OpenStreetMap3, also contribute their share.

Due to the massive volume, variety, velocity, and veracity of spatial big data [15], tra-
ditional spatio-temporal analysis methods have been enhanced by various methods from
machine learning. For example, graph convolutional neural networks can be utilized for
traffic forecasting [6] and imputing human activity purposes from GPS trajectory data [16],
by embedding a large variety of spatio-temporal information and structure in the graphs,
and subsequently exploiting this structure for the tasks to be solved.

Several short- and long-term studies based on mobility data have been performed but
many of the data sets are not publicly available due to privacy issues [13], which also hin-
ders their reproducibility [26]. These studies have provided general insights into statistical
properties and spatio-temporal regularities of human movement [8], or more specifically
investigated the spatial distribution of different demographic groups in a city [28].

Geospatial technologies, in combination with spatio-temporal data, are also important
tools to be utilized for changing people’s mobility behavior. When employed as persuasive
technologies, they can nudge users to travel more sustainably [27]. Based on the detection
and identification of activities and transport modes [17], changes in behavior over time can
be analysed and evaluated. Feedback, gamification methods, and computationally gener-
ated suggestions for alternative and more sustainable travel options can support people in
their spatio-temporal decision-making, eventually resulting in decreased CO2 emissions.
Different studies have demonstrated the positive effects of persuasive information and
communication technologies on mobility choices and behavior [5, 24].

3 Research challenges

Spatial data science has contributed broadly to solving the challenges of sustainable mobil-
ity, from movement analysis and prediction based on spatial big data and spatio-temporal
analysis methods, to geospatial technologies such as location based services for support-
ing behavior change. Still, important research challenges, which require collaboration with
other scientific fields, are ahead of us.

It will be important to compare and benchmark both the results of mobility studies and
their data sets. This is a challenge due to the variety of distinctive tracking styles, sampling
rates, spatio-temporal distributions, and sampling biases [14]. The resulting differences
in accuracy and privacy issues pose additional problems. Public availability of mobility
datasets, such as GeoLife [30], is still limited and more comprehensive benchmark datasets
including variable context information are needed. This requires further research regarding
strategies for privacy protection of individuals [7,12,13]. Further challenges regarding data
concern real-time availability of different sources—including tracking, context, and social
media data—and efficient filtering processes due to the sheer volume of data. Whereas in
previous times, one could not get enough data, the flood of today often makes it difficult

2https://data.london.gov.uk/, https://data.gov.sg/, https://opendata.cityofnewyork.us/, https://
data.stadt-zuerich.ch/.

3https://www.openstreetmap.org/
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to find the right data for solving a particular problem. Making progress on these issues,
and also on problems of data integration, requires interdisciplinary efforts including data
science, geoinformatics, and social science.

From the perspective of analysing mobility data, the integration of machine learning
methods into spatio-temporal analysis has already commenced [22,23]. But truly spatially-
aware machine learning methods are for the large part still missing. Most of the machine
learning models, which are applied to spatial data do not account for spatial autocorrela-
tion and structure, and can therefore either not fully take advantage of spatial constraints,
or in the worst-case lead to incorrect results.

From a cognitive perspective, we still do not know how long-term behavior change to-
wards sustainable mobility can be achieved. Although some outcomes of longer-term stud-
ies are encouraging, most effects resulting from the use of geospatial technologies such as
location based services have only been demonstrated within short-term studies with small
samples of users, strongly biased participant groups, and often a lack of control groups [5].
Results can therefore not be generalized to society as a whole. Technological development
and ubiquitous access to smartphone apps will hopefully provide us with opportunities in
the future to more comprehensively evaluate the potential of such devices to contribute to
the vision of a truly sustainable mobile society.
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