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Abstract: Sensors, portable devices, and location-based services, generate massive
amounts of geo-tagged, and/or location- and user-related data on a daily basis. The manip-
ulation of such data is useful in numerous application domains, e.g., healthcare, intelligent
buildings, and traffic monitoring, to name a few. A high percentage of this data carries
information of users’ activities and other personal details, and thus its manipulation and
sharing gives rise to concerns about the privacy of the individuals involved. To enable
the secure—from the users’ privacy perspective—data sharing, researchers have already
proposed various seminal techniques for the protection of users’ privacy. However, the
continuous fashion in which data is generated nowadays and the high availability of exter-
nal sources of information pose more threats and add extra challenges to the problem. In
this survey, we visit the works done on data privacy for continuous data publishing and
report on the proposed solutions, with a special focus on solutions concerning location or
geo-referenced data.

Keywords: privacy-preserving algorithms, continuous data publishing, location privacy,
microdata privacy, statistical data privacy

1 Introduction

Data privacy is becoming an increasingly important issue both at a technical and at a so-
cietal level, and introduces various challenges ranging from the way we share and pub-
lish data sets to the way we use online and mobile services. Personal information, also
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described as microdata, has acquired increasing value and is, in many cases, used as the
‘currency’ [11] to pay for access to various services, i.e., users are asked to exchange their
personal information with the service provided. This is particularly true for many Location-
Based Services (LBSs), e.g., Google Maps [5], Waze [9], etc.; these services exchange their
‘free’ service with collecting and using user-generated data, such as timestamped geolo-
calized information. Besides navigation and location-based services, social media applica-
tions (e.g., Facebook [3], Twitter [8], Foursquare [4], etc.) take advantage of user-generated
and user-related data, to make relevant recommendations and show personalized adver-
tisements. In this case, the location is also part of the important required personal data to
be shared. Last but not least, data brokers (e.g., Experian [2], TransUnion [7], Acxiom [1],
etc.) collect data from public and private resources, e.g., censuses, bank card transaction
records, voter registration lists, etc. Most of this data is georeferenced and contain, directly
or indirectly, location information; protecting the location of the user has become one of the
most important privacy goals so far.

These different sources and types of data, on the one hand give useful feedback to the
involved users and/or services, and, on the other hand, when combined together, provide
valuable information to various internal/external analytical services. While these activities
happen within the boundaries of the law [108], it is important to be able to protect the
privacy (by anonymizing, perturbing, encrypting, etc.) of the corresponding data before
sharing, and to take into account the possibility of correlating, linking, and crossing di-
verse independent data sets. Especially the latter is becoming quite important in the era of
Big Data, where the existence of diverse linked data sets is one of the promises; as an exam-
ple, one can refer to the discussion on Entity Resolution problems using Linked Open Data
in [42]. In some cases, personal data might be so representative that even if de-identified,
when integrated with a small amount of external data, one can trace back to their original
source. An example case is shown in [36], where it was discovered that four mobility traces
are enough to identify 95% of the individuals in a data set. The case of location is actu-
ally one of great interest in this context, since space brings its own particular constraints.
The ability to combine and correlate additional information impacts the ways we protect
sensitive data and affects the privacy guarantees we can provide. Besides the explosion of
online and mobile services, another important aspect is that a lot of these services actually
rely on data provided by the users (crowdsourced data) to function, with prominent exam-
ple efforts being Wikipedia [10] and OpenStreetMap [6]. Data from crowdsourced based
applications, if not protected correctly, can be easily used to identify personal information,
such as location or activity, and thus lead indirectly to cases of user surveillance [83].

Privacy-preserving processes usually introduce noise in the original or the aggregated
data set in order to hide the sensitive information. In the case of microdata, a privacy-
protected version, containing some synthetic data as well, is generated with the intrinsic
goal to make the users indistinguishable. In the case of statistical data (i.e., the results of
statistical queries over the original data sets), a privacy-protected version is generated by
adding noise on the actual statistical values. In both cases, we end up affecting the quality
of the published data set. The privacy and the utility of the ‘noisy’ output are two con-
trasting desiderata, which need to be measured and balanced. Furthermore, if we want to
account for external additional information (e.g., linked or correlated data) and at the same
time to ensure the same level of protection, we need to add additional noise, inevitably
deteriorating the quality of the output. This problem becomes particularly pertinent in the
Big Data era, as the quality or Veracity is one of the five dimensions (known as the five
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‘V’s’) that define Big Data, and where there is an abundance of external information that
cannot be ignored. Since this needs to be taken into account prior to the publishing of the
data set or the aggregated statistics there of, introducing external information into privacy-
preserving techniques becomes part of the traditional processing flow while keeping an
acceptable quality to privacy ratio.

As we can observe in the examples mentioned above, there are many cases where data is
not protected at source (what is also described as local data privacy protection) for various
reasons, e.g., the users do not want to pay extra, it is impossible due to technical complexity,
because the quality of the expected service will be deteriorated, etc. Thus, the burden of
the privacy-preserving process falls on the various aggregators of personal/private data,
who should also provide the necessary technical solutions to ensure data privacy for every
user (what is also described as global data privacy protection).

The discussion so far explains and justifies the current situation in the privacy-
preserving scientific area. As a matter of fact, a wealth of algorithms have been proposed
for privacy-preserving data publishing, either for microdata or statistical data. Moreover,
privacy-preserving algorithms are designed specifically for data published at one point in
time (used in what we call snapshot data publishing) or data released over or concerning a
period of time (used in what we call continuous data publishing). In that respect, we need
to be able to correctly choose the proper privacy algorithm(s), which would allow users to
share protected copies of their data with some guarantees. The selection process is far from
trivial, since it is essential to:

1. select an appropriate privacy-preserving technique, relevant to the data set intended
for public release;

2. understand the different requirements imposed by the selected technique and tune
the different parameters according to the circumstances of the use case based on,
e.g., assumptions, level of distortion, etc. [72];

3. get the necessary balance between privacy and data utility, which is a significant task
for any privacy algorithm as well as any privacy expert.

Selecting the wrong privacy algorithm or configuring it poorly may put at risk the pri-
vacy of the involved individuals and/or end up deteriorating the quality and therefore the
utility of the data set.

In data privacy research, privacy in continuous data publishing scenarios is the area that
is concerned by studying the privacy problems created when sensitive data is published
continuously, either infinitely (e.g., streaming data) or by multiple continuous publications
over a known period of time (e.g., finite time series data). This specific subfield of data
privacy becomes increasingly important since it:

(i) includes the most prominent cases, e.g., location (trajectory) privacy problems, and
(ii) provides the most challenging and yet not well charted part of the privacy algorithms

since it is rather new and increasingly complex.

In this context, this survey seeks to offer a guide that would allow its users to choose the
proper algorithm(s) for their specific use case accordingly. Additionally, data in continuous
data publishing use cases require a timely processing because their value usually decreases
over time depending on the use case as demonstrated in Figure 1. For this reason, we pro-
vide an insight into time-related properties of the algorithms, e.g., if they work on infinite,
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Figure 1: Value of data for decision-making over time from less than seconds to more than
months [56].

real-time data, or if they take into consideration existing data dependencies. The impor-
tance of continuous data publishing is stressed by the fact that, commonly, many types
of data have such properties, with geospatial data being a prominent case. A few exam-
ples include—but are not limited to—data being produced while tracking the movement
of individuals for various purposes (where data might also need to be privacy-protected
in real-time and in a continuous fashion); crowdsourced data that are used to report mea-
surements, such as noise or pollution (where again we have a continuous timestamped
and usually georeferenced stream of data); and even isolated data items that might in-
clude location information, such as photographs or social media posts. Typically, in such
cases, we have a collection of data referring to the same individual or set of individuals
over a period of time, which can also be infinite. Additionally, in many cases, the privacy-
preserving processes should take into account implicit correlations and restrictions that
exist, e.g., space-imposed collocation or movement restrictions. Since this data is related to
most of the important applications and services that enjoy high utilization rates, privacy-
preserving continuous data publishing becomes one of the emblematic problems of our
time.

Since the domain of data privacy is vast, several surveys have already been published
with different scopes. A group of surveys focuses on specific different families of privacy-
preserving algorithms and techniques. For instance, Simi et al. [101] provide an extensive
study of works on k-anonymity and Dwork [37] focuses on differential privacy. Another
group of surveys focuses on techniques that allow the execution of data mining or machine
learning tasks with some privacy guarantees, e.g., Wang et al. [111] and Ji et al. [63]. In
a more general scope, Wang et al. [48] analyze the challenges of privacy-preserving data
publishing and offer a summary and evaluation of relevant techniques. Additional sur-
veys look into issues around Big Data and user privacy. Indicatively, Jain et al. [62], and
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Soria-Comas and Domingo-Ferrer [104] examine how Big Data conflict with pre-existing
concepts of privacy-preserving data management, and how efficiently k-anonymity and
ε-differential privacy deal with the characteristics of Big Data. Others narrow down their
research to location privacy issues. To name a few, Chow and Mokbel [34] investigate
privacy protection in continuous LBSs and trajectory data publishing, Chatzikokolakis et
al. [28] review privacy issues around the usage of LBSs and relevant protection mechanisms
and metrics, Primault et al. [92] summarize location privacy threats and privacy-preserving
mechanisms, and Fiore et al. [47] focus only on privacy-preserving publishing of trajectory
microdata. Finally, there are some surveys on application-specific privacy challenges. For
example, Zhou et al. [123] have a focus on social networks, and Christin et al. [35] give an
outline of how privacy aspects are addressed in crowdsensing applications. Nevertheless,
to the best of our knowledge, there is no up-to-date survey that deals with privacy under
continuous data publishing covering diverse use cases. Such a survey becomes very useful
nowadays, due to the abundance of continuously user-generated data sets that could be
analyzed and/or published in a privacy-preserving way, and the quick progress made in
this research field.

This survey is organized as follows. We begin by providing a general description of
the field of data privacy, and the most prominent anonymization and obfuscation/noise-
inducing algorithms in the literature (Section 2). The main content of the survey (Section 3)
spans works related to the continuous publishing of data points or to the re-publishing of
(or parts of) a data set along time, with regard to the privacy of the individuals involved.
More particularly, we divide the works in two categories, based on the type of data to
be published: microdata—the data in their original format—or statistical data—statistical
query results over microdata. In all cases, we use the same set of properties to characterize
the algorithms, which facilitates their comparison. Finally (Section 4), we put these works
into perspective and discuss various future research lines in this area.

2 Background

In this section, we introduce some relevant terminology and background knowledge
around the problem of continuous publishing of sensitive data sets. First, we categorize
data as we view them in the context of continuous data publishing. Second, we define data
privacy, we list the kinds of attacks that have been identified in the literature, as well as the
desired privacy levels that can be achieved, and the basic privacy operations that are ap-
plied to achieve data privacy. Third, we provide a brief overview of the seminal works on
privacy-preserving data publishing, used also in continuous data publishing, fundamental
in the domain and important for the understanding of the rest of the survey.

To accompany and facilitate the descriptions in this section, we provide the following
running example.

Example 2.1. Users interact with an LBS by making queries in order to retrieve some use-
ful location-based information or just reporting user-state at various locations. This user–
LBS interaction generates user-related data, organized in a schema with the following at-
tributes: Name (the unique identifier of the table), Age, Location, and Status (Table 1a). The
‘Status’ attribute includes information that characterizes the user’s state or the query itself,
and its value varies according to the service functionality. Subsequently, the generated data
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is aggregated (by issuing count queries over them) in order to derive useful information
about the popularity of the venues during the day (Table 1b).

Name Age Location Status

Donald 27 Le Marais at work
Daisy 25 Belleville driving
Huey 12 Montmartre running
Dewey 11 Montmartre at home
Louie 10 Latin Quarter walking
Quackmore 62 Opera dining

(a) Microdata

Location Count

Belleville 1
Latin Quarter 1
Le Marais 1
Montmartre 2
Opera 1

(b) Statistical data

Table 1: Example of raw user-generated (a) microdata, and related (b) statistical data for a
specific timestamp.

2.1 Data

2.1.1 Categories

As this survey is about privacy, the data that we are interested in, contain information about
individuals and their actions. We firstly classify the data based on their content:

• Microdata—the data items in their raw, usually tabular, form pertaining to individuals
or objects.

• Statistical data—the outcome of statistical processes on microdata.

An example of microdata is displayed in Table 1a, while an example of statistical data in
Table 1b. Data, in either of these two forms, may have a special property called continuity,
i.e., their values change and can be observed through time. Depending on the span of
observation, we distinguish the following categories:

• Finite data—data is observed during a predefined time interval.
• Infinite data—data is observed in an uninterrupted fashion.

Example 2.2. Extending Example 2.1, Table 2 shows an example of continuous data obser-
vation, by introducing one data table for each consecutive timestamp. The two data tables,
over the time-span [t1, t2] are an example of finite data. Infinite data is the whole series of
data obtained over the period [t1,∞) (infinity is denoted by ‘. . . ’).

We further define two sub-categories applicable to both finite and infinite data: sequen-
tial and incremental data; these two subcategories are not exhaustive, i.e., not all data sets be-
long to the one or the other category. In sequential data, the value of the observed variable
changes, depending on its previous value. For example, trajectories are finite sequences of
location stamps, as naturally the position at each timestamp is connected to the position
at the previous timestamp. In incremental data, an original data set is augmented in each
subsequent timestamp with supplementary information. For example, trajectories can be
considered as incremental data, when at each timestamp we consider all the previously
visited locations by an individual, incremented by his current position.
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Name Age Location Status

Donald 27 Le Marais at work
Daisy 25 Belleville driving
Huey 12 Montmartre running
Dewey 11 Montmartre at home
Louie 10 Latin Quarter walking
Quackmore 62 Opera dining

t1

Name Age Location Status

Donald 27 Montmartre driving
Daisy 25 Montmartre at the mall
Huey 12 Latin Quarter sightseeing
Dewey 11 Opera walking
Louie 10 Latin Quarter at home
Quackmore 62 Montmartre biking

t2

. . .

(a) Microdata

Location Count
t1 t2 . . .

Belleville 1 0 . . .
Latin Quarter 1 2 . . .
Le Marais 1 0 . . .
Montmartre 2 3 . . .
Opera 1 1 . . .

(b) Statistical data

Table 2: Continuous data observation of (a) microdata, and corresponding (b) statistics at
multiple timestamps.

2.1.2 Processing and publishing

We categorize data processing and publishing based on the implemented scheme, as:

• Global—data is collected, processed, and privacy-protected, and then published by a
central (trusted) entity, e.g., [20, 65, 87].

• Local—data is stored, processed, and privacy-protected on the side of data generators
before sending it to any intermediate or final entity, e.g., [14, 44, 68].

In the case of location data privacy, the existing literature is divided in service- and
data-centric methods [34]. The service-centric methods correspond to scenarios where in-
dividuals share their privacy-protected location with a service to get some relevant infor-
mation (local publishing scheme). The data-centric methods relate to the publishing of
user-generated data to data consumers (global publishing scheme).

There is a long-standing debate whether the local or the global architectural scheme
is more efficient with respect to not only privacy, but also organizational, economic, and
security factors [74]. On the one hand, in the global privacy scheme (Figure 2a), the de-
pendence on third-party entities poses the risk of arbitrary privacy leakage from a com-
promised data publisher. Nonetheless, the expertise of these entities is usually superior to
that of the majority of (non-technical) data generators’ in terms of understanding privacy
permissions/policies and setting-up relevant preferences. Moreover, in the global architec-
ture, less distortion is necessary before publicly releasing the aggregated data set, naturally
because the data sets are larger and users can be ‘hidden’ more easily. On the other hand,
the local privacy scheme (Figure 2b) facilitates fine-grained data management, offering to
every individual better control over their data [53]. Nonetheless, data distortion at an early
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(a) Global scheme

(b) Local scheme

Figure 2: The usual flow of user-generated data, optionally harvested by data publishers,
privacy-protected, and released to data consumers, according to the (a) global and (b) local
privacy schemes.

stage might prove detrimental to the overall utility of the aggregated data set. The so far
consensus is that there is no overall optimal solution among the two designs. Most service-
providing companies prefer the global scheme, mainly for reasons of better management
and control over the data, while several privacy advocates support the local privacy scheme
that offers users full control over what and how data is published. Although there have
been attempts to bridge the gap between them, e.g., [19], the global scheme is considerably
better explored and implemented [97]. For this reason, most of the works in this survey
span this context.

We distinguish between two publishing modes for private data: snapshot and contin-
uous. In snapshot publishing (also appearing as one-shot or one-off publishing), the sys-
tem processes and releases a data set at a specific point in time and thereafter is not con-
cerned anymore with the specific data set. For example, in Figure 3a (ignore the privacy-
preserving step for the moment) individuals send their data to an LBS provider, consider-
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ing a specific time point. In continuous data publishing the system computes, and pub-
lishes augmented or updated versions of one data set in different time points, and with-
out a predefined duration. In the context of privacy-preserving data publishing, privacy
preservation is tightly coupled with the data processing and publishing stages.

As already discussed in Section 1, in this survey we are studying the continuous data
publishing mode, and thus we do not include works considering the snapshot paradigm.
We make this deliberate choice as privacy-preserving continuous data publishing is a more
complex problem, receiving more and more attention from the scientific community in the
recent years, as shown by the increasing number of publications in this area. Moreover,
the use cases of continuous data publishing abound, with the proliferation of the Inter-
net, sensors, and connected devices, which produce and send to servers huge amounts of
continuous personal data in astounding speed.

We identify two main data processing and publishing modes:

• Batch—data is considered in groups in specific time intervals.
• Streaming—data is considered per timestamp, infinitely.

Batch data processing and publishing (Figure 3b) is performed (usually offline) over
both finite and infinite data, while streaming processing and publishing (Figure 3c) is by
definition connected to infinite data (usually in real-time).

2.2 Privacy

When personal data is publicly released, either as microdata or statistical data, individu-
als’ privacy can be compromised, i.e, an adversary becomes certain about an individual’s
personal information with a probability higher than a desired threshold. In the literature,
this compromise is know as information disclosure and is usually categorized as [48, 81, 90]:

• Presence disclosure—the participation (or absence) of an individual in a data set is re-
vealed.

• Identity disclosure—an individual is linked to a particular record.
• Attribute disclosure—new information (attribute value) about an individual is re-

vealed.

In the literature, identity disclosure is also referred to as record linkage, and presence
disclosure as table linkage. Notice that identity disclosure can result in attribute disclosure,
and vice versa.

To better illustrate these definitions, we provide some examples based on Table 1. Pres-
ence disclosure appears when by looking at the (privacy-protected) counts of Table 1b, we
can guess if Quackmore has participated in Table 1a. Identity disclosure appears when we
can guess that the sixth record of (a privacy-protected version of) the microdata of Table 1a
belongs to Quackmore. Attribute disclosure appears when it is revealed from (a privacy-
protected version of) the microdata of Table 1a that Quackmore is 62 years old.

2.2.1 Levels

The information disclosure that a data release may entail is often linked to the protection
level that a privacy-preserving algorithm is trying to achieve. More specifically, in continu-
ous data publishing the privacy protection level is considered with respect to not only the
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(a) Snapshot mode

(b) Batch mode (c) Streaming mode

Figure 3: The different data processing and publishing modes of continuously generated
data sets. (a) Snapshot publishing, (b) continuous publishing—batch mode, and (c) contin-
uous publishing—streaming mode. ooox denotes the privacy-protected version of the data
set Dx or statistics thereof, while ‘. . . ’ denote the continuous data generation and/or pub-
lishing, where applicable. Depending on the data observation span, n can either be finite
or tend to infinity.

users but also to the events occurring in the data. An event is considered as a pair of an
identifying attribute of an individual and the sensitive data (including contextual informa-
tion), and can be seen as a correspondence to a record in a database, where each individual
may participate once. Data publishers typically release events in the form of data points’
sequences usually indexed in time order (time series), and geotagged, e.g., (‘Dewey’, ‘at
home at Montmartre at t1’), . . . , (‘Quackmore’, ‘dining at Opera at t1’). The term ‘users’ is
used to refer to the individuals, also known as participants, who are the source of the pro-
cessed and published data. Therefore, they should not be confused with the consumers of
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the released data sets. Users are subject to privacy attacks, and thus are the main point of
interest of privacy protection mechanisms. In more detail, the privacy protection levels are:

• Event [39, 40]—any single event of any individual is protected.
• User [39, 40]—all the events of any individual, spanning the observed event sequence,

are protected.
• w-event [70]—any sequence of w events, within the released event series, of any individ-

ual is protected.

Figure 4 demonstrates the application of the possible protection levels on the statistical
data of Example 2.2. For instance, in event-level (Figure 4a) it is hard to determine whether
Quackmore was dining at Opera at t1. Moreover, in user-level (Figure 4b) it is hard to
determine whether Quackmore was ever included in the released event series at all. Finally,
in 2-event-level (Figure 4c) it is hard to determine whether Quackmore was ever included
in the released event series between the timestamps t1 and t2, t2 and t3, etc. (i.e., for a
window w = 2).

(a) Event-level (b) User-level (c) 2-event-level

Figure 4: Protecting the data of Table 2b on (a) event-, (b) user-, and (c) 2-event-level. A
suitable distortion method can be applied accordingly.

Contrary to event-level that provides privacy guarantees for a single event, user- andw-
event-level offer stronger privacy protection by protecting a series of events. In use-cases
that involve infinite data, event- and w-event-level attain an adequate balance between
data utility and user privacy, whereas user-level is more appropriate when the span of data
observation is predefined. w-event- is narrower than user-level protection due to its sliding
window processing methodology. In the extreme cases where w is set to either 1 or to the
size of the entire length of the event series,w-event- matches event- or user-level protection,
respectively. Although the described levels have been coined in the context of differential
privacy [38], a seminal privacy method that we will discuss in more detail in Section 2.2.4,
it is possible to apply their definitions to other privacy protection techniques as well.

2.2.2 Attacks

Information disclosure is typically achieved by combining supplementary (background)
knowledge with the released data or by setting unrealistic assumptions while designing the
privacy-preserving algorithms. In its general form, this is known as adversarial or linkage
attack. Even though many works directly refer to the general category of linkage attacks,
we distinguish also the following sub-categories, addressed in the literature:
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• Sensitive attribute domain knowledge. Here we can identify homogeneity and skewness
attacks [81,85], when statistics of the sensitive attribute values are available, and sim-
ilarity attack, when semantics of the sensitive attribute values are available.

• Complementary release attacks [107] with regard to previous releases of different ver-
sions of the same and/or related data sets. In this category, we also identify the un-
sorted matching attack [107], which is achieved when two privacy-protected versions
of an original data set are published in the same tuple ordering. Other instances in-
clude: (i) the join attack [112], when tuples can be identified by joining (on the (quasi-
)identifiers) several releases, (ii) the tuple correspondence attack [49], when in case of
incremental data certain tuples correspond to certain tuples in other releases, in an in-
jective way, (iii) the tuple equivalence attack [60], when tuples among different releases
are found to be equivalent with respect to the sensitive attribute, and (iv) the unknown
releases attack [99], when the privacy preservation is performed without knowing the
previously privacy-protected data sets.

• Data dependence

– within one data set. Data tuples and data values within a data set may be corre-
lated, or linked in such a way that information about one person can be inferred
even if the person is absent from the database. Consequently, in this category
we put assumptions made on the data generation model based on randomness,
like the random world model, the independent and identically distributed data
(i.i.d.) model, or the independent-tuples model, which may be unrealistic for
many real-world scenarios. This attack is also known as the deFinetti’s attack [71].

– among one data set and previous data releases, and/or other external
sources [32, 72, 82, 121]. The strength of the dependence between a pair of vari-
ables can be quantified with the utilization of correlations [105]. Correlation im-
plies dependence but not vice versa, however, the two terms are often used as
synonyms. The correlation among nearby observations, i.e., the elements in a
series of data points, are referenced as autocorrelation or serial correlation [91]. De-
pending on the evaluation technique, e.g., Pearson’s correlation coefficient [105], a
correlation can be characterized as negative, zero, or positive. A negative value
shows that the behavior of one variable is the opposite of that of the other,
e.g., when the one increases the other decreases. Zero means that the variables
are not linked and are independent of each other. A positive correlation indicates
that the variables behave in a similar manner, e.g., when the one decreases the
other decreases as well.
The most prominent types of correlations might be:
∗ Temporal [115]—appearing in observations (i.e., values) of the same object

over time.
∗ Spatial [15, 77]—denoted by the degree of similarity of nearby data points

in space, and indicating if and how phenomena relate to the (broader) area
where they take place.

∗ Spatiotemporal—a combination of the previous categories, appearing when
processing time series or sequences of human activities with geolocation
characteristics, e.g., [52].

Contrary to one-dimensional correlations, spatial correlation is multi-
dimensional and multi-directional, and can be measured by indicators
(e.g., Moran’s I [88]) that reflect the spatial association of the concerned data. Spa-
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tial autocorrelation has its foundations in the First Law of Geography stating that
“everything is related to everything else, but near things are more related than
distant things” [109]. A positive spatial autocorrelation indicates that similar
data is clustered, a negative that data is dispersed and is close to dissimilar ones,
and when close to zero, that data is randomly arranged in space.

A common practice for extracting data dependencies from continuous data, is by ex-
pressing the data as a stochastic or random process. A random process is a collection of
random variables or bivariate data, indexed by some set, e.g., a series of timestamps, a
Cartesian plane R2, an n-dimensional Euclidean space, etc. [102]. The values a ran-
dom variable can take are outcomes of an unpredictable process, while bivariate data
is pairs of data values with a possible association between them. Expressing data as
stochastic processes allows their modeling depending on their properties, and there-
after the discovery of relevant data dependencies. Some common stochastic processes
modeling techniques include:

– Conditional probabilities [58]—probabilities of events in the presence of other
events.

– Conditional Random Fields (CRFs) [75]—undirected graphs encoding conditional
probability distributions.

– Markov processes [96]—stochastic processes for which the conditional probability
of their future states depends only on the present state and it is independent of
its previous states (Markov assumption).

∗ Markov chains [50]—sequences of possible events whose probability de-
pends on the state attained in the previous event.

∗ Hidden Markov Models (HMMs) [16]—statistical Markov models of Markov
processes with unobserved states.

The first sub-category of attacks has been mainly addressed in works on snapshot mi-
crodata publishing, and is still present in continuous publishing; however, algorithms for
continuous publishing typically accept the proposed solutions for the snapshot publishing
scheme (see discussion over k-anonymity and l-diversity in Section 2.2.4). This kind of
attacks is tightly coupled with publishing the (privacy-protected) sensitive attribute value.
An example is the lack of diversity in the sensitive attribute domain, e.g., if all users in the
data set of Table 1a shared the same running Status (the sensitive attribute). The second
and third subcategory are attacks emerging (mostly) in continuous publishing scenarios.
Consider again the data set in Table 1a. The complementary release attack means that an
adversary can learn more things about the individuals (e.g., that there are high chances
that Donald was at work) if he/she combines the information of two privacy-protected
versions of this data set. By the data dependence attack, the status of Donald could be
more certainly inferred, by taking into account the status of Dewey at the same moment
and the dependencies between Donald’s and Dewey’s status, e.g., when Dewey is at home,
then most probably Donald is at work. In order to better protect the privacy of Donald in
case of attacks, the data should be privacy-protected in a more adequate way (than without
the attacks).
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2.2.3 Operations

Protecting private information, which is known by many names (obfuscation, cloaking,
anonymization, etc.), is achieved by using a specific basic privacy protection operation.
Depending on the intervention that we choose to perform on the original data, we identify
the following operations:

• Aggregation—group together multiple rows of a data set to form a single value.
• Generalization—replace an attribute value with a parent value in the attribute taxon-

omy. Notice that a step of generalization, may be followed by a step of specialization,
to improve the quality of the resulting data set.

• Suppression—delete completely certain sensitive values or entire records.
• Perturbation—disturb the initial attribute value in a deterministic or probabilistic way.

The probabilistic data distortion is referred to as randomization.

For example, consider the table schema User(Name, Age, Location, Status). If we want
to protect the Age of the user by aggregation, we may replace it by the average age in her
Location; by generalization, we may replace the Age by age intervals; by suppression we
may delete the entire table column corresponding to Age; by perturbation, we may aug-
ment each age by a predefined percentage of the age; by randomization we may randomly
replace each age by a value taken from the probability density function of the attribute.

It is worth mentioning that there is a series of algorithms (e.g., [18, 23, 67]) based on the
cryptography operation. However, the majority of these methods, among other assumptions
that they make, have minimum or even no trust to the entities that handle the personal in-
formation. Furthermore, the amount and the way of data processing of these techniques
usually burden the overall procedure, deteriorate the utility of the resulting data sets, and
restrict their applicability. Our focus is limited to techniques that achieve a satisfying bal-
ance between both participants’ privacy and data utility. For these reasons, there will be no
further discussion around this family of techniques in this article.

2.2.4 Seminal works

For completeness, in this section we present the seminal works for privacy-preserving data
publishing, which, even though originally designed for the snapshot publishing scenario,
have paved the way, since many of the works in privacy-preserving continuous publishing
are based on or extend them.

Microdata Sweeney coined k-anonymity [107], one of the first established works on data
privacy. A released data set features k-anonymity protection when the sequence of values
for a set of identifying attributes, called the quasi-identifiers, is the same for at least k records
in the data set. Computing the quasi-identifiers in a set of attributes is still a hard problem
on its own [89]. k-anonymity constitutes an individual indistinguishable from at least k−1
other individuals in the same data set. In a follow-up work [106], the author describes a
way to achieve k-anonymity for a data set by the suppression or generalization of certain
values of the quasi-identifiers. Machanavajjhala et al. [85] pointed out that k-anonymity is
vulnerable to homogeneity and background knowledge attacks. Thereby, they proposed
l-diversity, which demands that the values of the sensitive attributes are ‘well-represented’
by l sensitive values in each group. Principally, a data set can be l-diverse by featuring
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at least l distinct values for the sensitive field in each group (distinct l-diversity). Other
instantiations demand that the entropy of the whole data set is greater than or equal to
log(l) (entropy l-diversity) or that the number of appearances of the most common sensitive
value is less than the sum of the counts of the rest of the values multiplied by a user defined
constant c (recursive (c, l)-diversity). Later on, Li et al. [81] indicated that l-diversity can be
void by skewness and similarity attacks due to sensitive attributes with a small value range.
In such cases, θ-closeness guarantees that the distribution of a sensitive attribute in a group
and the distribution of the same attribute in the whole data set is ‘similar’. This similarity
is bounded by a threshold θ. A data set features θ-closeness when all of its groups feature
θ-closeness.

The main drawback of k-anonymity (and its derivatives) is that it is not tolerant to ex-
ternal attacks of re-identification on the released data set. The problems identified in [107]
appear when attempting to apply k-anonymity on continuous data publishing (as we will
also see next in Section 3.1). These attacks include multiple k-anonymous data set releases
with the same record order, subsequent releases of a data set without taking into account
previous k-anonymous releases, and tuple updates. Proposed solutions include rearrang-
ing the attributes, setting the whole attribute set of previously released data sets as quasi-
identifiers or releasing data based on previous k-anonymous releases.

Statistical data While methods based on k-anonymity have been mainly employed
for releasing microdata, differential privacy [38] has been proposed for releasing privacy-
protected, high utility aggregates over microdata. Differential privacy ensures that any
adversary observing a privacy-protected output, no matter his/her computational power
or auxiliary information, cannot conclude with absolute certainty if an individual is in-
cluded in the input data set. Moreover, it quantifies and bounds the impact that the ad-
dition/removal of the data of an individual to/from an input data set has on the derived
privacy-protected aggregates.

In its formal definition, a privacy mechanism M, which outputs a query answer with
some injected randomness, satisfies ε-differential privacy for a user-defined privacy budget
ε [87] if for all pairs of neighboring (i.e., differing by the data of an individual) data sets D
and D′, it holds that:

Pr[M(D) ∈ O] ≤ eε Pr[M(D′) ∈ O],

where Pr[·] denotes the probability of an event, and O is the world of possible outputs of a
mechanismM. As the definition implies, for low values of ε,M achieves stronger privacy
protection since the probabilities of D and D′ being true worlds are similar, but the utility
of the mechanism’s output is reduced since more randomness is introduced. The privacy
budget ε has a non-zero and positive value, and is usually set to 0.01, 0.1, or, in some cases,
ln 2 or ln 3 [76].

A typical mechanism example is the Laplace mechanism [41], which draws randomly a
value from the probability distribution of Laplace(µ, b), where µ stands for the location
parameter and b > 0 the scale parameter. Here, µ is equal to the original output value of
a query function, and b is the sensitivity of the query function divided by ε. The Laplace
mechanism works for any function with range the set of real numbers. A specialization of
this mechanism for location data is the Planar Laplace mechanism [14], which is based on a
multivariate Laplace distribution. For query functions that do not return a real number,
e.g., ‘What is the most visited country this year?’ or in cases where perturbing the value
of the output will completely destroy its utility, e.g., ‘What is the optimal price for this
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auction?’, most works in the literature use the Exponential mechanism [41]. This mechanism
utilizes a utility function u that maps (input data set D, output value r) pairs to utility
scores, and selects an output value r from the input pairs, with probability proportional
to exp( εu(D,r)

2∆u ), where ∆u is the sensitivity of the utility function. Another technique for
differential privacy mechanisms is the randomized response [114]. It is a privacy-preserving
survey method that introduces probabilistic noise to the statistics of a research by randomly
instructing respondents to answer truthfully or ‘Yes’ to a sensitive, binary question. The
technique achieves this randomization by including a random event, e.g., the flip of a fair
coin. The respondents reveal to the interviewers only their answer to the question, and
keep as a secret the result of the random event (i.e., if the coin was tails or heads). There-
after, the interviewers can calculate the probability distribution of the random event, e.g., 1

2
heads and 1

2 tails, and thus they can roughly eliminate the false responses and estimate the
final result of the research.

Differential privacy mechanisms satisfy two composability properties: sequential and
parallel [87, 104]. Due to the sequential composability property, the total privacy level of
two independent mechanisms M1 and M2 over the same data set that satisfy ε1 and ε2,
respectively, equals to ε1 + ε2. The parallel composability property dictates that, when the
mechanisms M1 and M2 are applied over disjoint subsets of the same data set, then the
overall privacy level is maxi∈{1,2} εi. Every time a data publisher interacts with (any part
of) the original data set, it is mandatory to consume some of the available privacy budget
according to the composability properties. This is a necessity, so as to ensure that there
will be no further arbitrary privacy loss, when the released data sets will be acquired by
adversaries (or simple users). However, post-processing the output of a differential privacy
mechanism can be done without using any additional privacy budget. Naturally, using
the same (or different) privacy mechanism(s) multiple times to interact with raw data in
combination with already perturbed data, implies that the privacy guarantee of the final
output will be calculated according to sequential composition.

Differential privacy methods are best for low sensitivity queries such as counts, because
the presence/absence of a single record can only change the result slightly. However, sum
and max queries can be problematic, since a single but very different value could change
the output noticeably, making it necessary to add a lot of noise to the query’s answer. Fur-
thermore, asking a series of queries may allow the disambiguation between possible data
sets, making it necessary to add even more noise to the outputs. For this reason, after
a series of queries exhausts the available privacy budget, the data set has to be discarded.
Keeping the original guarantee across multiple queries that require different/new answers,
one must inject noise proportional to the number of the executed queries, and thus destroy-
ing the utility of the output.

A special category of differential privacy-preserving algorithms is that of pan-private al-
gorithms [40]. Pan-private algorithms hold their privacy guarantees even when snapshots
of their internal state (memory) are accessed during their execution by an external entity,
e.g., subpena, security breach, etc. There are two intrusion types that a data publisher has
to deal with when designing a pan-private mechanism: single unannounced, and continual
announced intrusion. In the first, the data publisher assumes that the mechanism’s state
is observed by the external entity one unique time, without the data publisher ever being
notified about it. In the latter, the external entity gains access to the mechanism’s state
multiple times, and the publisher is notified after each time. The simplest approach to
deal with both cases is to make sure that the data in the memory of the mechanism have
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constantly the same distribution, i.e., they are differentially private. Notice that this must
hold throughout the mechanism’s lifetime, even before/after it processes any sensitive data
point(s).

The notion of differential privacy has highly influenced the research community, re-
sulting in many follow-up publications ( [72, 86, 120] to mention a few). We distinguish
here Pufferfish [73] and geo-indistinguishability [14, 29]. Pufferfish is a framework that allows
experts in an application domain, without necessarily having any particular expertise in
privacy, to develop privacy definitions for their data sharing needs. To define a privacy
mechanism using Pufferfish, one has to define a set of potential secrets X , a set of dis-
tinct pairs Xpairs, and auxiliary information about data evolution scenarios B. X serves
as an explicit specification of what we would like to protect, e.g., ‘the record of an indi-
vidual x is (not) in the data’. Xpairs is a subset of X × X that instructs how to protect
the potential secrets X , e.g., (‘x is in the table’, ‘x is not in the table’). Finally, B is a set
of conservative assumptions about how the data evolved (or were generated) that reflects
the adversary’s belief about the data, e.g., probability distributions, variable correlations,
etc. When there is independence between all the records in the original data set, then ε-
differential privacy and the privacy definition of ε-Pufferfish(X ,Xpairs,B) are equivalent.
Geo-indistinguishability is an adaptation of differential privacy for location data in snapshot
publishing. It is based on l-privacy, which offers to individuals within an area with radius
r, a privacy level of l. More specifically, l is equal to εr if any two locations within dis-
tance r provide data with similar distributions. This similarity depends on r because the
closer two locations are, the more likely they are to share the same features. Intuitively,
the definition implies that if an adversary learns the published location for an individual,
the adversary cannot infer the individual’s true location, out of all the points in a radius
r, with a certainty higher than a factor depending on l. The technique adds random noise
drawn from a multivariate Laplace distribution to individuals’ locations, while taking into
account spatial boundaries and features.

Example 2.3. To illustrate the usage of the microdata and statistical data techniques for
privacy-preserving data publishing, we revisit Example 2.2. In this example, users contin-
uously interact with an LBS by reporting their status at various locations. Then, the re-
ported data is collected by the central service, in order to be protected and then published,
either as a whole, or as statistics thereof. Notice that in order to showcase the straightfor-
ward application of k-anonymity and differential privacy, we apply the two methods on
each timestamp independently from the previous one, and do not take into account any
additional threats imposed by continuity.

Name Age Location Status

* > 20 Paris at work
* > 20 Paris driving
* > 20 Paris dining

* ≤ 20 Paris running
* ≤ 20 Paris at home
* ≤ 20 Paris walking

Name Age Location Status

* > 20 Paris driving
* > 20 Paris at the mall
* > 20 Paris biking

* ≤ 20 Paris sightseeing
* ≤ 20 Paris walking
* ≤ 20 Paris at home

. . .

t1 t2

Table 3: 3-anonymous event-level protected versions of the microdata in Table 2a.
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First, we anonymize the data set of Table 2a using k-anonymity, with k = 3. This means
that any user should not be distinguished from at least 2 others. Status is the sensitive
attribute, thus the attribute that we wish to protect. We start by suppressing the values
of the Name attribute, which is the identifier. The Age and Location attributes are the
quasi-identifiers, so we proceed to adequately generalize them. We turn age values to
ranges (≤ 20, and > 20), and generalize location to city level (Paris). Finally, we achieve
3-anonymity by putting the entries in groups of three, according to the quasi-identifiers.
Table 3 depicts the results at each timestamp.

Location Count

Belleville 1
Latin Quarter 1
Le Marais 1
Montmartre 2
Opera 1

(a) True counts

Noise−−−→

Location Count

Belleville 1
Latin Quarter 0
Le Marais 2
Montmartre 3
Opera 1

(b) Perturbed counts

Table 4: (a) The original version of the data of Table 2b, and (b) their 1-differentially event-
level private version.

Next, we demonstrate differential privacy. We apply an ε-differentially private Laplace
mechanism, with ε = 1, taking into account the count query that generated the true counts
of Table 2b. The sensitivity of a count query is 1 since the addition/removal of a tuple from
the data set can change the final result of the query by maximum 1 (tuple). Figure 5 shows
how the Laplace distribution for the true count in Montmartre at t1 looks like. Table 4b
shows all the perturbed counts that are going to be released.
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Figure 5: A Laplace distribution for location µ = 2 and scale b = 1.
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3 Privacy-preserving continuous data publishing

In this section we review the algorithms proposed in the literature for privacy-preserving
continuous publishing. We organize the presentation following the data categories iden-
tified in Section 2: works that deal with privacy-preserving microdata are presented in
Section 3.1, and works for privacy-preserving statistical data are presented in Section 3.2.
Furthermore, we divide the works in each of the two sections based on the data type: finite
and infinite data. This categorization will help the interested reader navigate with ease the
provided reviews, depending on the nature of the data that he/she wants to manipulate
and protect.

The accompanying Table 5 and Table 6 summarize all the works reviewed in this survey
and put a more detailed index in the disposal of the reader. There are two main columns,
concerning the:

• Data. In the first column of the Data part, we identify the considered data Category
from the set of categories defined in Section 2.1.1, i.e., finite or infinite. We may also
encounter here the subcategories sequential or incremental, when the corresponding
algorithm is designed for these specific kinds of data. We outline (in bold) the cases
where spatial data is explicitly considered; nevertheless, all other algorithms could
be equally applied on location data as well. The second column of the Data part
concerns the adopted Publishing Mode, i.e., batch or streaming, and the Publishing
Scheme, i.e., global or local, as they are defined in Section 2.1.2.

• Protection. The second part of the table contains four columns. First, we mention the
Attack scenario, i.e., complementary release or data dependence (see Section 2.2.2),
together with more specific sub-categories, when available. Notice here, that several
works based on differential privacy refer directly to the most general category that
we have defined, namely the linkage attack. Second, we mention the base protection
Method, which is mostly k-anonymity, differential privacy, or an extension thereof
(see Section 2.2.4). Third, we mention the protection Level, i.e., event, user, or w-event
(see Section 2.2.1). User level is the most popular because, inevitably, a user is more
exposed when their data is included in many (continuous) releases. Notice that we
have applied the privacy levels to algorithms other than differential privacy by look-
ing whether the quantity of added distortion depends on the fact that a user may exist
in multiple releases or not (user- vs event-level privacy). Finally, we list the privacy
Operation that is utilized in the algorithm (see Section 2.2.3). Naturally, the most pop-
ular operation for microdata privacy protection is generalization, because in this way
we can easily group tuples and hide identifiers in the groups. For statistics privacy
protection, the most popular operation is perturbation, which introduces statistical
noise to the computed statistics. Certain algorithms combine different operations in
order to achieve better user privacy and/or data quality.

3.1 Microdata

As observed in Table 5, privacy-preserving algorithms for microdata rely mostly on k-
anonymity or derivatives of it. Ganta et al. [51] revealed that k-anonymity methods are
vulnerable to complementary release attacks (or composition attacks in the original publica-
tion). Consequently, the research community proposed solutions based on k-anonymity,
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Microdata

Article

Data Protection

Category
Publishing

Level Attack Operation Method
Mode Scheme

(k, δ)- finite batch global user complementary generalization, k-anonymity
anonymity [12] (sequential) release randomization
Li et al. [79] finite batch global user compl. release generalization, l-diversity

(unknown releases) randomization
Erdogdu and finite batch/ local user dependence randomization -
Fawaz [43] streaming (temporal)
Jiang et al. [64] finite batch global event linkage perturbation differential

(sequential) (Laplace) privacy
Chen et al. [31] finite batch global user linkage perturbation differential

(sequential) (Laplace) privacy
Xiao et al. [117] finite batch local user dependence perturbation (multi- differential

(sequential) (temporal) variate Laplace) privacy
Promesse [93] finite batch local event linkage perturbation -

(sequential)
DP-Star [57] finite batch global user linkage perturbation differential

(sequential) (Laplace) privacy

(X , Y )- infinite batch global user compl. release generalization, k-anonymity
privacy [112] (sequential) (join) specialization
BCF- infinite batch global user compl. release (tuple generalization, k-anonymity
anonymity [49] (incremental) correspondence) specialization
m-invariance [116] infinite batch global user compl. release generalization, l-diversity

synthetic data
e-equivalence [60] infinite batch global user compl. release generalization l-diversity

(tuple equivalence) synthetic data
Shmueli and infinite batch global user compl. release generalization, l-diversity
Tassa [99] (sequential) (unknown releases) permutation
Zhou et al. [122] infinite streaming global event same with generalization, k-anonymity

k-anonymity [107] randomization
MaskIt [54] infinite streaming local event dependence suppression -

(temporal)
PLP [84] infinite streaming local event dependence suppression -

(spatiotemporal)
Al-Dhubhani and infinite streaming local event dependence perturbation (multi- geo-indistin-
Cazalas [13] (sequential) (temporal) variate Laplace) guishability
Ghinita et al. [52] infinite streaming local/ event dependence generalization, -

(sequential) global (spatiotemporal) perturbation
Ye et al. [119] infinite streaming global event linkage generalization l-diversity

(sequential)
Cao et al. [25, 26] finite/ streaming global user/ dependence perturbation differential

infinite (w-)event (temporal) (Laplace) privacy

Table 5: Summary table of reviewed privacy-preserving algorithms for continuous micro-
data publishing. Location-specific techniques are listed in bold.

focusing on different threats linked to continuous publication, as we review later on. How-
ever, notice that only a couple [79, 99] of the following works assume that data sets are
privacy-protected independently of one another, meaning that the publisher is oblivious of
the rest of the publications. On the other side, algorithms that are based on differential
privacy are not concerned with so specific attacks as, by definition, differential privacy
considers that the adversary may possess any kind of background knowledge. Later on,
data dependencies were also considered for differential privacy algorithms, to account for
the extra privacy loss entailed by them.
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Statistical data

Article

Data Protection

Category
Publishing

Level Attack Operation Method
Mode Scheme

Kellaris et al. [69] finite batch global event linkage perturbation differential
(Laplace) privacy

Chen et al. [30] finite batch global user linkage perturbation differential
(sequential) (Laplace) privacy

Hua et al. [61] finite batch global user linkage perturbation (ex- differential
(sequential) ponential, Laplace) privacy

Li et al. [80] finite batch global user linkage perturbation differential
(sequential) (Laplace) privacy

DPT [59] finite batch global user dependence perturbation differential
(sequential) (spatial) (Laplace) privacy

Song et al. [103] finite batch global event dependence perturbation pufferfish
(Laplace)

Fan et al. [46] finite streaming global user dependence perturbation differential
(sequential) (spatiotemporal) (Laplace) privacy

FAST [45] finite streaming global user linkage perturbation differential
(Laplace) privacy

CTS-DP [110] finite streaming global event dependence perturbation differential
(serial) (Laplace) privacy

Chan et al. [27] finite/ streaming global event linkage perturbation differential
infinite (Laplace) privacy

l-trajectory [24] infinite streaming global w-event linkage perturbation differential
(sequential) (Laplace) privacy

Bolot et al. [22] infinite streaming global w-event linkage perturbation differential
(Laplace) privacy

Kellaris et al. [70] infinite streaming global w-event linkage perturbation differential
(Laplace) privacy

RescueDP [113] infinite streaming global w-event dependence perturbation differential
(serial) (Laplace) privacy

RAPPOR [44] infinite streaming local user linkage randomization (ran- differential
domized response) privacy

PrivApprox [95] infinite streaming global event linkage randomization (ran- differential
domized response) privacy

Li et al. [78] infinite streaming global event dependence randomization -
(serial)

PeGaSus [33] infinite streaming global event linkage perturbation differential
(Laplace) privacy

Table 6: Summary table of reviewed privacy-preserving algorithms for continuous statisti-
cal data publishing. Location-specific techniques are listed in bold.

3.1.1 Finite observation

Wang and Fung [112] address the problem of anonymously releasing different projections
(i.e., subsets of the attributes) of the same data set in subsequent timestamps. More pre-
cisely, the authors want to protect individual information that could be revealed from join-
ing various releases of the same data set. To do so, instead of locating the quasi-identifiers
in a single release, the authors suggest that the identifiers may span the current and all
previous releases of the (projections of the) data set. Then, the proposed method uses the
join of the different releases on the common identifying attributes. The goal is to generalize
the identifying attributes of the current release, given that previous releases are immutable.
The generalization is performed in a top down manner, meaning that the attributes are ini-
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tially over-generalized, and step by step are specialized until they reach the point when
predefined quality and privacy requirements are met. The privacy requirement is the so-
called (X , Y )-privacy for a threshold k, meaning that the identifying attributes in X are
linked with at most k sensitive values in Y , in the join of the previously released and cur-
rent data sets. The quality requirement can be tuned into the framework. Namely, the
authors propose three alternatives: the reduction of the class entropy [94, 98], the notion
of distortion, and the discernibility [17]. The anonymization algorithm for releasing a data
set in the existence of a previously released data set takes into account the scalability and
performance problems that a join among those two may entail. Still, when many previous
releases exist, the complexity would remain high.

Fung et al. [49] introduce the problem of privately releasing continuous incremental
data sets. As a reminder, the invariant of this kind of releases is that at every timestamp
ti, the records previously released at tj (j < i) are released again together with a set of
new records. The authors first focus in two consecutive releases and describe three classes
of possible attacks, which fall under the general category of complementary attacks. They
name these attacks correspondence attacks because they rely on the principle that all tuples
from an original data set D1, from timestamp t1, correspond to a tuple in the data set D2,
from timestamp t2. Naturally, the opposite does not hold, as tuples added at t2 do not exist
in D1. Assuming that the attacker knows the quasi-identifiers and the timestamp of the
record of a person, they define the backward, cross, and forward (BCF) attacks. They show
that combining two individually k-anonymized subsequent releases using one of the afore-
mentioned attacks can lead to ‘cracking’ some of the records in the set of k candidate tuples
rendering the privacy level lower than k. Except for the detection of cases of compromising
BCF anonymity between two releases, the authors also provide an anonymization algo-
rithm for a release ooo2 in the presence of a private release ooo1. The algorithm starts from the
most possible generalized state for the quasi-identifiers of the records in D2. Step by step,
it checks which combinations of specializations on the attributes do not violate the BCF
anonymity and outputs the most possible specialized version of the data set. The authors
discuss how the framework extends to multiple releases and to different kinds of privacy
methods (other than k-anonymity). It is worth noting that to maintain a certain quality for
a release, it is essential that the delta among subsequent releases is large enough; otherwise
the needed generalization level may destroy the utility of the data set.

Abul et al. [12] defined (k, δ)-anonymity for enabling high-quality moving-objects data
sets publishing. The authors claim that the classical k-anonymity framework cannot be
directly applied to such kind of data from a data-centric perspective. The traditional dis-
tortion techniques in k-anonymity, i.e., generalization or suppression, yield great loss of
information. On the one hand, suppression diminishes the size of the database. On the
other hand, generalization demands the existence of quasi-identifiers, the values of which
are going to be generalized. In trajectories, however, all points can be equally considered as
quasi-identifiers. Obviously, a generalization of all the trajectories points would yield great
levels of distortion. For this reason, a new, spatial-based distortion method is proposed.
After clustering the trajectories in groups of at least k elements, each trajectory is translated
into a new one, in a vicinity of a predefined threshold δ. Of course, the newly generated
trajectories should still form a k-anonymous set. The authors validate their theory by exper-
imentally showing that the resulting distance of count queries executed over a data set and
its (k, δ) version, remains low. However, a comparative evaluation to existing clustering
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techniques, e.g., k-means would have been interesting, to better support the contributions
on this part of the solution as well.

Erdogdu and Fawaz [43] consider the scenario where privacy-conscious individuals
separate the data that they generate into sensitive and non-sensitive. The individuals keep
the former unreleased and publish samples of the latter to a service provider. Privacy map-
ping, implemented as a stochastic process, distorts the non-sensitive data samples locally,
and a separable distortion metric (e.g., Hamming distance) calculates the discrepancy of the
distorted data from the original. The goal of the privacy mapping is to find a balance be-
tween the distortion and privacy metric, i.e., achieve maximum released data utility, while
offering sufficient privacy guarantees. The authors assume that there is a data dependence
(modeled with an HMM) between the two data sets, and thus the release of the distorted
data set can reveal information about the sensitive one. They investigate both a simple
attack setting and a complex one. In the simple attack, the adversary can make static as-
sumptions, based only on the so far made observations that cannot be later altered. In the
complex attack, past and future data releases affect dynamically the assumptions that an
adversarial entity makes. In both cases, the framework quantifies the information leakage
at any time point using a privacy metric that measures the improvement of the adversarial
inference of the sensitive data set, which the individual kept secret, after observing the
data released at that particular point. Throughout the process, the authors consider both
the batch and the streaming processing schemes. However, the assumption that individu-
als are privacy-conscious can drastically limit the applicability of the framework. Further-
more, the metrics that the framework utilizes for the evaluation of the privacy guarantees
that it provides are not intuitive.

Xiao et al. [116] consider the case when a data set is (re)published in different times-
tamps in an update (insert/delete tuple) manner. More precisely, they address data
anonymization in continuous publishing by implementing m-invariance. In a simple k-
anonymity (or l-diverse) scenario the privacy of an individual existing in two updates can
be compromised by the intersection of the set of sensitive values. In contrast, an individ-
ual who exists in a series of m-invariant releases is always associated with the same set of
m different sensitive values. To enable the publishing of m-invariant data sets, artificial
tuples (counterfeits) may be added in a release. To minimize the noise added to the data
sets, the authors provide an algorithm with two extra desiderata: limit the counterfeits and
minimize the quasi-identifiers’ generalization level. Still, the choice of adding tuples with
specific sensitive values disturbs the value distribution with a direct effect on any relevant
statistics analysis.

In the same update setting (insert/delete tuple), He et al. [60] introduce another kind
of attack, namely the equivalence attack, not taken into account by the aforementioned m-
invariance technique. The equivalence attack allows for sets of individuals to be considered
equivalent as far as the sensitive attribute is concerned, in different timestamps. In this way,
all the members of the equivalence class will be harmed, if the sensitive value is learned
even for only one member. For a number of releases to be private, they have to be both
m-invariant and e-equivalent (e < m). The authors propose an algorithm incorporating m-
invariance, based on the graph optimization min cut problem, for publishing e-equivalent
data sets. The proposed method can achieve better levels of privacy, in comparable times
and quality as m-invariance.

Shmueli and Tassa [99] identified the computational inefficiency of anonymously re-
leasing a data set, taking into account previous ones, in scenarios of continuous data pub-
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lishing. The released data sets contain subsets of attributes of an original data set, while
the authors propose an extension for attribute addition. Their algorithm can compute l-
diverse anonymized releases (over different subsets of attributes) in parallel by generating
l − 1 so-called fake worlds. A fake world is generated from the base data set by randomly
permutating non-identifier and sensitive values among the tuples, in such a way that min-
imal information loss (quality desideratum) is incurred. This is partially accomplished by
verifying that the permutation is done among quasi-identifiers that are similar. Then, the
algorithm creates buckets of tuples with at least l different sensitive values, in which the
quasi-identifiers will then be generalized in order to achieve l-diversity (privacy protection
desideratum). The generalization step is also conducted in an information-loss efficient
way. All different releases will be l-diverse because they are created assuming the same
possible worlds, with which they are consistent. Tuples/attributes deletion is briefly dis-
cussed and left as an open question. The article is contrasted with a previous work [100]
of the same authors, claiming that the new approach considers a stronger adversary (the
adversary knows all individuals with their quasi-identifiers in the data set and not only
one), and that the computation is much more efficient, as it does not have an exponential
complexity with respect to the number of previous publications.

Li et al. [79] identified a common characteristic in most of the privacy techniques: when
anonymizing a data set all previous releases are known to the data publisher. However, it
is probable that the releases are independent from each other, and that the data publisher
is unaware of these releases when anonymizing the data set. In such a setting, the pre-
vious techniques would suffer from composition attacks. The authors define this kind of
adversary and propose a hybrid model for data anonymization. More precisely, the pub-
lisher/adversary knows that an individual exists in two different anonymized versions of
the same data set, he has a hold of the anonymized versions, but the anonymization is
done independently (i.e., without considering the previously anonymized data sets) for
each data set. The key idea in fighting a composition attack is to enforce the probability
that the matches among tuples from two data sets are random, linking different rather than
the same individual. To do so, the proposed privacy protection method exploits three pre-
processing steps before applying a traditional k-anonymity or l-diversity algorithm. First,
the data set is sampled so as to blur the knowledge of the existence of individuals. Then,
especially in small data sets, quasi-identifiers are distorted by noise addition before the
classical generalization step. The noise is taken from a normal distribution with the mean
and standard deviation values calculated on the corresponding quasi-identifier values. In
the case of sparse data, the sensitive values are generalized along with the quasi-identifiers.
The danger of composition attacks is less prominent when using this method on top of k-
anonymity rather than without, while having comparable quality results. The authors also
provide a comparison to data set release using ε-differential privacy, demonstrating that
their techniques are superior with respect to quality because in the opponent algorithm
the noise is added up for each of the sensitive attribute to be protected. Even though the
authors use in the experiments two different values for ε, a better experiment would have
been to compare the quality/privacy ratio between the two methods. This is a good at-
tempt to independently anonymize multiple times the same data set; nevertheless, the sce-
nario is restricted to releases over the same database schema, using the same perturbation
and generalization functions.

Jiang et al. [64] focus on ship trajectories with known starting and terminal points. More
specifically, they study different noise addition mechanisms for publishing trajectories with
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differential privacy guarantees. These mechanisms include adding global noise to the tra-
jectory and local noise to either each location point or the coordinates of each point of the
trajectory. The first two mechanisms sample noisy radius from an exponential distribution,
while the latter adds noise drawn from a Laplace distribution to each coordinate of every
location. By comparing these different techniques, they conclude that the latter offers better
privacy guarantee and smaller error bound. Nonetheless, the resulting trajectory is notice-
ably distorted due to the addition of Laplace noise to the original coordinates. To tackle
this issue, they design the Sampling Distance and Direction (SDD) mechanism. This mecha-
nism allows the publishing of optimal next possible trajectory point by sampling, from the
probability distribution of the exponential mechanism, a suitable distance and direction
at the current position, while taking into account the ship’s maximum speed constraint.
Due to the fact that SDD utilizes the exponential mechanism, it outperforms the other three
mechanisms and maintains a good utility-privacy balance.

Chen et al. [31] propose a non-interactive data-dependent privacy-preserving algorithm
to generate a differentially private release of trajectory data. The algorithm relies on a noisy
prefix tree, i.e., an ordered search tree data structure used to store an associative array. Each
node represents a location, from a set of possible locations that any user can be present at,
of a trajectory and contains a perturbed count, which represents the number of individuals
at the current location, with noise drawn from a Laplace distribution. The privacy budget
is equally allocated to each level of the tree representing a timestamp. At each level and for
every node, the algorithm seeks for the children nodes with non-zero number of trajectories
(non-empty nodes) to continue expanding them. An empty node has a noisy count lower
than a threshold that is dependent on the available privacy budget and the height of the
tree. All children nodes associate with disjoint data subsets, and thus the algorithm can
utilize for every node all of the available budget at every tree level, according to the parallel
composition theorem of differential privacy. To generate the anonymized database, it is
necessary to traverse the prefix tree once in post-order, paying attention to terminating
(empty) nodes. During this process, taking into account some consistency constraints helps
to avoid erroneous trajectories due to the noise injection. Namely, each node of a path
should have a count that is greater than or equal to the counts of its children, and each
node of a path should have a count that is greater than the sum of the counts of all of its
children. Increasing the privacy budget results in less average relative error because less
noise is added at each level, and thus improves quality. By increasing the height of the
tree, the relative error initially decreases as more information is retained from the database.
However, after a certain threshold, the increase of height can result in less available privacy
budget at each level, and thus more relative error due to the increased perturbation.

Xiao et al. [117] propose another privacy definition based on differential privacy that ac-
counts for temporal correlations in geo-tagged data. Location transitions between two con-
secutive timestamps are determined by temporal correlations modeled through a Markov
chain. A δ-location set includes all the probable locations a user might appear at, excluding
locations of low probability. Therefore, the true location is hidden in the resulting set, in
which any pair of locations are indistinguishable. The lower the value of δ, the more loca-
tions are included and hence, the higher the level of privacy that is achieved. The authors
use the Planar Isotropic Mechanism (PIM) as perturbation mechanism, which they designed
upon their proof that l1-norm sensitivity fails to capture the exact sensitivity in a mul-
tidimensional space. For this reason, PIM utilizes instead sensitivity hull, an independent
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notion of the context of location privacy. In [118], the authors demonstrate the functionality
of their system LocLok, which implements the concept of δ-location.

Primault et al. [93] proposed Promesse, an algorithm that builds on time distortion in-
stead of location distortion when releasing trajectories. Promesse takes as input an indi-
vidual’s mobility trace comprising of a data set of pairs of geolocations and timestamps,
and a parameter ε. The latter indicates the desired distance between the location points
that will be publicly released. Initially, Promesse extracts regularly spaced locations and
interpolates each one of the locations at a distance depending on the previous location and
the value of ε. Then, it removes the first and last locations of the mobility trace and assigns
uniformly distributed timestamps to the remaining locations of the trajectory. Hence, the
resulting trace has a smooth speed, and therefore places where the individual stayed longer,
e.g., home, work, etc., are indistinguishable. The algorithm needs to know the starting and
ending point of the trajectory; thus, it can only apply to offline scenarios. Furthermore, it
works better with fine grained data sets because in this way it can achieve optimal geoloca-
tion and timestamp pairing. Moreover, the definition of ε cannot provide versatile privacy
protection since it is data dependent.

Gursoy et al. [57] designed DP-Star, a differential privacy framework that publishes
synthetic trajectories featuring similar statistics compared to the original ones. By utiliz-
ing the Minimum Description Length (MDL) principle [55], DP-Star eliminates redundant
data points in the original trajectories and generates trajectories containing only represen-
tative points. In this way, it is necessary to allocate the available privacy budget to far
less data points, striking a balance between preciseness and conciseness. Moreover, the al-
gorithm constructs a density-aware grid, with granularity that adapts to the geographical
density of the trajectory points of the data set and preserves the spatial density despite any
necessary perturbation. Then, DP-Star preserves the dependence between the trajectories’
start and end points by extracting (through a first-order Markov mobility model) the trip
distribution and the intra-trajectory mobility. Finally, a Median Length Estimation (MLE)
mechanism approximates the trajectories’ lengths, and the framework generates privacy
and utility preserving synthetic trajectories. Every phase of the process consumes some
predefined privacy budget, keeping the respective products of each phase private and eli-
gible for publishing. The authors compare their design with that of [30] and [59] by running
several tests, and ascertain that it outperforms them in terms of data utility. However, due
to DP-Star’s privacy budget distribution to its different phases, for small values of ε the
framework’s privacy performance is inferior to that of its competitors.

3.1.2 Infinite observation

Zhou et al. [122] introduce the problem of infinite private data publishing, and propose
a randomized solution based on k-anonymity. More precisely, they continuously publish
equivalence classes of size greater than or equal to k containing generalized tuples from
distinct persons (or identifiers in general). To create the equivalence classes they set several
desiderata. Except for the size of a class, which should be greater than or equal to k, the
information loss occurred by the generalization should be minimal, whereas the delay in
forming and publishing the class should be kept low as well. To achieve these require-
ments, they built a randomized model using the popular structure of R-trees, extended
to accommodate data density distribution information. In this way, they achieve a better
quality/publishing delay ratio for the released private data. On the one hand, the formed
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classes contain data items that are close to each other (in dense areas), while on the other
hand, classes with tuples of sparse areas are released as soon as possible so that the delay
will remain low.

Gotz et al. [54] developed MaskIt, a system that interfaces the sensors of a personal de-
vice, identifies various sets of contexts and releases a stream of privacy-preserving contexts
to untrusted applications installed on the device. A context represents the circumstances
that form the setting for an event, e.g., ‘at the office’, ‘running’, etc. The individuals have
to define the sensitive contexts that they wish to be protected and the desired level of pri-
vacy. The system models the individuals’ various contexts and transitions between them.
It captures temporal correlations and models individuals’ movement in the space using
Markov chains while taking into account historical observations. After the initialization,
MaskIt filters a stream of individual’s contexts by checking for each context whether it is
safe to release it or it is necessary to suppress it. The authors define δ-privacy as the privacy
model of MaskIt. More specifically, a system preserves δ-privacy if the difference between
the posterior and prior knowledge of an adversary after observing an output at any possi-
ble timestamp is bounded by δ. After filtering all the elements of an input stream, MaskIt
releases an output sequence for a single day. The system can repeat the process to publish
longer context streams. The expected number of released contexts quantifies the utility of
the system.

Ma et al. [84] propose PLP (Protecting Location Privacy), a crowdsensing scheme that
protects location privacy against adversaries that can extract spatiotemporal correlations
from crowdsensing data. PLP filters an individual’s context (location, sensing data) stream
while it takes into consideration long-range dependencies among locations and reported
sensing data, which are modeled by CRFs. It suppresses sensing data at all sensitive loca-
tions while data at non-sensitive locations are reported with a certain probability defined
by observing the corresponding CRF model. On the one hand, the scheme estimates the
privacy of the reported data by the difference δ between the probability that an individ-
ual would be at a specific location given the supplementary information versus the same
probability without the extra information. On the other hand, it quantifies the utility by
measuring the total amount of reported data (more is better). An estimation algorithm
searches for the optimal strategy that maximizes utility while preserving a predefined pri-
vacy threshold.

Al-Dhubhani and Cazalas [13] propose an adaptive privacy-preserving technique based
on geo-indistinguishability, which adjusts the amount of noise required to obfuscate an in-
dividual’s location based on its correlation level with the previously published locations.
Before adding noise, an evaluation of the adversary’s ability to estimate an individual’s
position takes place. This process utilizes a regression algorithm for a certain prediction
window that exploits previous location releases. More concretely, in areas with locations
presenting strong correlations, an adversary can predict the current location with low esti-
mation error. Consequently, it is necessary to add more noise to the locations prior to their
release. Adapting the amount of injected noise depending on the data correlation level
might lead to a better performance, in terms of both privacy and utility, in the short term.
However, alternating the amount of injected noise at each timestamp, without ensuring the
preservation of the features (including correlations) present in the original data, might lead
to arbitrary utility loss.

Ghinita et al. [52] tackle attacks to location privacy that arise from the linkage of maxi-
mum velocity with cloaked regions when using an LBS. The authors propose methods that
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can prevent the disclosure of the exact location coordinates of an individual, and bound
the association probability of an individual to a sensitive location-related feature. The first
method is based on temporal cloaking and utilizes deferral and postdating. Deferral delays
the disclosure of a cloaked region that is impossible for an individual to have reached based
on the latest region that she published and her known maximum speed. Postdating reports
the nearest previous cloaked region that will allow the LBS to return relevant results with
high probability, since the two regions are close. The second method implements spatial
cloaking. First, it creates cloaked regions by taking into account all of the user-specified
sensitive features that are relevant to the current location (filtering of features). Then, it en-
larges the area of the region to satisfy the privacy requirements (cloaking). Finally, it defers
the publishing of the region until it includes the current timestamp (safety enforcement)
similar to temporal cloaking. The system measures the quality of service of both methods
in terms of the cloaked region size, time and space error, and failure ratio. The cloaked
region size is important because larger regions may decrease the utility of the information
that the LBS might return. The time and space error is possible due to delayed location re-
porting and region cloaking. Failure ratio corresponds to the percentage of dropped queries
in cases where it is impossible to satisfy the privacy requirements. Although both methods
experimentally prove to offer adequate quality of service, the privacy requirements and
metrics that the authors consider do not offer substantial privacy guarantees for commer-
cial application.

Ye et al. [119] present an l-diversity method for producing a cloaked area, based on the
local road network, for protecting trajectories. A trusted entity divides the spatial region
of interest based on the density of the road network, using quadtree structures, until every
subregion contains at least l road segments. Then, it creates a database for each subre-
gion by generating all the possible trajectories based on real road network information.
The trusted entity uses this database, when individuals attempt to interact with an LBS by
sending their current location, to predict their next locations. Thereafter, it selects the l − 1
nearest trajectories to the individual’s current location and constructs a minimum cloaking
region. The resulting cloaking area covers the l nearest trajectories and ensures a minimum
area of coverage. This method addresses the limitations of k-anonymity in terms of contin-
uous data publishing of trajectories. The required calculation of every possible trajectory,
for the construction of a trajectory database for every subregion, might require an arbitrary
amount of computations depending on the area’s features. Nonetheless, the utilization of
quadtrees can limit the overhead of the searching process.

Cao et al. [25,26] propose a method for computing the temporal privacy loss of a differ-
ential privacy mechanism in the presence of temporal correlations and background knowl-
edge. The goal of their technique is to guarantee privacy protection and to bound the
privacy loss at every time point under the assumption of independent data releases. It
calculates the temporal privacy loss as the sum of the backward and forward privacy loss
minus the default privacy loss ε of the mechanism (because it is counted twice in the afore-
mentioned entities). This calculation is done for each individual that is included in the
original data set, and the overall temporal privacy loss is equal to the maximum calcu-
lated value at every time point. The backward/forward privacy loss at any time point
depends on the backward/forward privacy loss at the previous/next instance, the back-
ward/forward temporal correlations, and ε. The authors propose solutions to bound the
temporal privacy loss, under the presence of weak to moderate correlations, in both finite
and infinite data publishing scenarios. In the latter case, they try to find a value for ε for
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which the backward and forward privacy loss are equal. In the former, they similarly try to
balance the backward and forward privacy loss while they allocate more ε at the first and
last time points, since they have higher impact to the privacy loss of the next and previous
ones. This way they achieve an overall constant temporal privacy loss throughout the time
series. According to the technique’s intuition, stronger correlations result in higher privacy
loss. However, the loss is smaller when the dimension of the transition matrix, which is
extracted according to the modeling of the correlations (here it is Markov chain), is larger
due to the fact that larger transition matrices tend to be uniform, resulting in weaker data
dependence. The authors investigate briefly all of the possible privacy levels; however,
the solutions that they propose are suitable only for the event-level. Last but not least, the
technique requires the calculation of the temporal privacy loss for every individual within
the data set which might prove computationally inefficient in real-time scenarios.

3.2 Statistical data

When continuously publishing statistical data, usually in the form of counts, the most
widely used privacy method is differential privacy, or derivatives of it, as witnessed in
Table 6. In theory differential privacy makes no assumptions about the background knowl-
edge available to the adversary. In practice, as we observe in Table 6, data dependencies
(e.g., correlations) arising in the continuous publication setting are frequently (but without
it being the rule) considered as attacks in the proposed algorithms.

3.2.1 Finite observation

Kellaris et al. [69] pointed out that in time series, where users might contribute to an arbi-
trary number of aggregates, the sensitivity of the query answering function is significantly
influenced by their presence/absence in the data set. Thus, the Laplace perturbation al-
gorithm, commonly used with differential privacy, may produce meaningless data sets.
Furthermore, under such settings, the discrete Fourier transformation of the Fourier per-
turbation algorithm (another popular technique for data perturbation) may behave errat-
ically and affect the utility of the outcome of the mechanism. For this reason, the authors
proposed their own method involving grouping and smoothing for one-time publishing
of time series of non-overlapping counts, i.e., the aggregated data of one count does not
affect any other count. Grouping includes partitioning the data set into similar clusters.
The size and the similarity measure of the clusters are data dependent. Random group-
ing consumes less privacy budget, as there is minimum interaction with the original data.
However, when using a grouping technique based on sampling, which has some privacy
cost but produces better groups, the impact of the perturbation is decreased. During the
smoothing phase, the average values for each cluster are calculated, and, finally, Laplace
noise is added to these values. In this way, the query sensitivity becomes less dependent
on each individual’s data, and therefore less perturbation is required.

Chen et al. [30] exploit a text-processing technique, the n-gram model, i.e., a contiguous
sequence of n items from a given data sample, to release sequential data without releasing
the noisy statistics (counts) of all of the possible sequences. This model allows the pub-
lishing of the most common n-grams (n is, typically, less than 5) to accurately reconstruct
the original data set. The privacy technique that the authors propose is suitable for count
queries and frequent sequential pattern mining scenarios. In particular, one of the appli-
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cations that the authors consider concerns sequential spatiotemporal data (i.e., trajectories)
of individuals. They group grams based on the similarity of their n values, construct a
search tree, and inject Laplace noise to each node value (count) to achieve user-level differ-
ential privacy protection. Instead of allocating the available privacy budget based on the
overall maximum height of the tree, they estimate each path adaptively based on known
noisy counts. The grouping process continues until the desired threshold of n is reached.
Thereafter, they release variable-length n-grams with certain thresholds for the values of
counts and tree heights, allowing to deal with the trade-off of shorter grams having less in-
formation than longer ones but less relative error. They use a set of consistency constraints,
i.e., the sum of each node’s noisy count has to be less than or equal to its parent’s noisy
count, and all the noisy counts of leaf nodes have to be within a predefined threshold.
These constraints improve the final data utility since they result in lower values of n. On
the one hand, this translates into higher counts, large enough to deal with noise injection
and the inherent Markov assumption in the n-gram model. On the other hand, it enhances
privacy when the universe of all grams with a lower n value is relatively small resulting in
more common sequences, which, nonetheless, is rarely valid in real-life scenarios.

Hua et al. [61] use, similar to the scheme proposed in [30], the n-grams modeling tech-
nique for publishing trajectories containing a small number of n-grams, thus, sharing few
or even no identical prefixes. They propose a differentially private location-specific gen-
eralization algorithm (exponential mechanism), where each position in the trajectory is
one record. The algorithm probabilistically partitions the locations at each timestamp with
probability proportional to their Euclidean distance from each other. They replace each
partition with its centroid and therefore, they offer better utility by creating groups of lo-
cations belonging to close trajectories. They optimize the algorithm for time efficiency by
using classic k-means clustering. Then, the algorithm releases the new trajectories by ob-
serving the generalized location partitions and their perturbed counts (i.e., sum of the same
locations at each timestamp) with noise drawn from a Laplace distribution. The process
continues until the total count of the published trajectories reaches the size of the original
data set. They can limit the total number of the possible trajectories by taking into account
the individual’s moving speed. The authors have measured the utility of distorted spa-
tiotemporal range queries by measuring the Hausdorff distance from the original results
and concluded that the utility deterioration is within reasonable boundaries considering
the offered privacy guarantees. Similar to [30], their approach works well for a small lo-
cation domain. To make it applicable to realistic scenarios, it is essential to truncate the
original trajectories in an effort to reduce the location domain. This results in a coarse dis-
cretization of the location area, leading to the arbitrary distortion of the spatial correlations
that are present in the original data set.

Li et al. [80] focus on publishing a set of trajectories, where, contrary to [61], each one is
considered as a single entry in the data set. First, using k-means clustering they partition
the original locations based on their pairwise Euclidean distances. The scheme represents
each location partition by their mean (centroid). A larger number of partitions, in areas
where close centroids exist, results in fewer locations in each partition, and thus lower
trajectory precision loss. Before adding noise, they randomly select partition centroids to
generate trajectories until they reach the size of the original data set. Then, they gener-
ate Laplace noise, which they bound according to a set of constraints, and they add it to
the count of locations of each point of every trajectory. Finally, they release the gener-
alized trajectories along with the noisy count of each location point. The authors prove
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experimentally that they reduce considerably the trajectory merging time at the expense of
utility.

He et al. present DPT (Differentially Private Trajectory) [59], a system that synthesizes
mobility data based on raw, speed-varying trajectories of individuals, while providing ε-
differential privacy protection guarantees. The system constructs a Hierarchical Reference
Systems (HRS) model to capture correlations between adjacent locations by imposing a
uniform grid at multiple resolutions (i.e., for different speed values) over the space, keep-
ing a prefix tree for each resolution, and choosing the centroids as anchor points. In each
reference system, anchor points have a small number of neighboring points with increas-
ing (by a constant factor) average distance between them and fewer children anchor points
as the grid resolution becomes finer. DPT estimates transition probabilities only for the
anchor points in proximity to the last observed location and chooses the appropriate ref-
erence system for each raw point, so that the consecutive points of the trajectory are ei-
ther neighboring anchors or have a parent-child relationship. The system generates the
transition probabilities by estimating the counts in the prefix trees. Thereafter, it chooses
the appropriate prefix trees, perturbs them with noise drawn from the Laplace distribu-
tion and adaptively prunes subtrees with low counts to improve the resulting utility. DPT
implements a direction-weighted sampling postprocessing strategy for the synthetic trajec-
tories to avoid the loss of directionality of the original trajectories due to the perturbation.
Nonetheless, as with all other similar techniques, the usage of prefix trees limits the length
of the released trajectories, which results into an uneven spatial distribution.

Song et al. [103] propose the Wasserstein mechanism, a technique that applies to any
general instantiation of Pufferfish (see Section 2.2.4). It adds noise proportional to the sen-
sitivity of a query F , which depends on the worst case distance between the distributions
P (F (X)|si, d) and P (F (X)|sj , d) for a variableX , a pair of secrets (si, sj), and an evolution
scenario d. The Wasserstein metric function calculates the worst case distance between
those two distributions. The noise is drawn from a Laplace distribution with parameter
equal to the quotient resulting from the division of the maximum Wasserstein distance of
the distributions of all the pairs of secrets by the available privacy budget ε. For opti-
mization purposes, the authors consider a more restricted setting. This setting, utilizes an
evolution scenario for the data correlations representation, and Bayesian networks for the
correlation modeling. The authors state that in cases where Bayesian networks are com-
plex, the Markov chains are a more efficient alternative. A generalization of the Markov
blanket mechanism, the Markov quilt mechanism, calculates data dependencies. The de-
pendent nodes of any node consist of its parents, its children, and the other parents of its
children. The present technique excels at data sets generated by monitoring applications
or networks, but it is not suitable for online scenarios.

Fan et al. [46] propose a real-time framework for releasing differentially private multi-
dimensional traffic monitoring data. At every timestamp, the Perturbation module injects
noise drawn from a Laplace distribution to the data. Then, the Estimation module post-
processes the perturbed data to improve the accuracy. The authors propose a temporal and
spatial estimation algorithm. The former estimates an internal time series model for each
location to improve the utility of the perturbation’s outcome by performing a posterior es-
timation that utilizes Gaussian approximation and Kalman filtering [66]. The latter reduces
data sparsity by grouping neighboring locations using a spatial indexing structure based
on quadtree. The Modeling/Aggregation module utilizes domain knowledge, e.g., road
network and density, and has a bidirectional interaction with the other two in parallel. Al-

JOSIS, Number 19 (2019), pp. 57–103



88 KATSOMALLOS, TZOMPANAKI, AND KOTZINOS

though the authors propose the framework for real-time scenarios, they do not deal with
infinite data processing/publication, which limits considerably its applicability.

In another work, Fan et al. designed FAST [45], an adaptive system that allows the
release of real-time aggregate time series under user-level differential privacy. These were
achieved by using a Sampling, a Perturbation, and a Filtering module. The Sampling mod-
ule samples on an adaptive rate the aggregates to be perturbed. The Perturbation module
adds noise to each sampled point according to the allocated privacy budget. The Filter-
ing module receives the perturbed data point and the original one and generates a poste-
rior estimate, which is finally released. The error between the perturbed and the released
(posterior estimate) point is used to adapt the sampling rate; the sampling frequency is
increased when data is going through rapid changes and vice-versa. Thus, depending on
the adjusted sampling rate, not every single data point is perturbed, saving in this way
the available privacy budget. While the system considers the temporal correlations of the
processed time series, it does not attempt to deal with the privacy threat that they might
pose.

Wang and Zu [110] defined Correlated Time Series Differential Privacy (CTS-DP). The
scheme guarantees that the correlation between the perturbation that is introduced by a
Correlated Laplace Mechanism (CLM), and the original time series is indistinguishable
(Series-Indistinguishability). CTS-DP deals with the shortcomings of independent and
identically distributed (i.i.d.) noise under the presence of correlations. I.i.d. noise offers
inadequate protection, because refinement methods, e.g., filtering, can remove it. Most
privacy-preserving methods choose to introduce more noise in the presence of strong cor-
relations thus, diminishing the data utility. An original and a perturbed time series sat-
isfy Series-Indistinguishability if their normalized autocorrelation functions are the same;
hence, the two time series are indistinguishable and the published time series satisfies dif-
ferential privacy as well. The authors consider the fact that, in signal processing, if an
i.i.d. signal passes through a filter, which consists of a combination of adders and delay-
ers, it becomes non-i.i.d. Hence, they design CLM, which uses four Gaussian white noise
series passed through a linear system, to produce a correlated Laplace noise series accord-
ing to the autocorrelation function of the original time series. Although the authors prove
experimentally that the implementation of CLM outperforms the current state-of-the-art
methods, they do not test its robustness against any filter, which they keep as future work.

3.2.2 Infinite observation

Chan et al. [27] designed continuous counting mechanisms for finite and infinite data pro-
cessing and publishing, satisfying ε-differential privacy. Their main contribution lies in
proposing the Binary and Hybrid mechanisms, which do not have any upper bound tem-
poral requirements. The mechanisms rely on the release of intermediate partial sums of
counts at consecutive timestamp intervals, called p-sums, and the injection of noise drawn
from a Laplace distribution. The Binary mechanism constructs a binary tree where each
node corresponds to a p-sum, and adds noise to each released p-sum proportional to its
corresponding length. The Hybrid mechanism publishes counts at sparse time intervals,
i.e., timestamps that are a power of 2. Both mechanisms offer event-level protection (pan-
privacy) under single unannounced and continual announced intrusions by adding a cer-
tain amount of noise to every p-sum in memory. They can facilitate continual top-k queries
in recommendation systems and multidimensional range queries. Furthermore, they are
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able to support applications that require a consistent output, i.e., at each timestamp the
counter increases by either 0 or 1.

Cao et al. [24] developed a framework that achieves personalized l-trajectory privacy
protection by dynamically adding noise at each timestamp, which exponentially fades over
time. Each individual can specify, in an array of size l, the desired protection level for each
location of his/her trajectory. The proposed framework is composed of three components.
The Dynamic Budget Allocation component allocates portions of the privacy budget to the
other two components: a fixed one to the Private Approximation and a dynamic one to the
Private Publishing component at each timestamp. The Private Approximation component
estimates, under a utility goal and an approximation strategy, whether it is beneficial to
publish approximate data or not. More precisely, it chooses an appropriate previous noisy
data release and republishes it if it is similar to the real statistics planned to be published.
The Private Publishing component takes as inputs the real statistics and the timestamp of
the approximate data, generated by the Private Approximation component, to be repub-
lished. If the timestamp of the approximate data is equal to the current timestamp, then
the current data with Laplace noise are published. Otherwise, the data at the correspond-
ing timestamp of the approximate data will be republished. The utilized approximation
technique is highly suitable for streaming processing, due to the implementation of ap-
proximation that can reduce significantly the privacy budget consumption. However, the
framework does not take into account privacy leakage stemming from data dependencies,
which limits considerably its applicability in real life data sets.

Bolot et al. [22] introduce the notion of decayed privacy in continual observation of ag-
gregates (sums). The authors recognize the fact that monitoring applications focus more
on recent events and data, therefore, the value of previous data releases exponentially
fades. This leads to a schema of privacy with expiration, according to which recent events
and data are more privacy sensitive than those preceding. Based on this, they apply de-
cayed sum functions for answering sliding window queries of fixed window size w on
data streams. Namely, window sum computes the difference of two running sums, and
exponentially decayed and polynomial decayed sums estimate the sum of decayed data.
For every consecutive w data points the algorithm generates binary trees where each node
is perturbed with Laplace noise with scale proportional to w. Instead of maintaining a bi-
nary tree for every window, the algorithm considers the windows that span two blocks as
the union of a suffix and a prefix of two consecutive trees. This way, the global sensitivity
of the query function is kept low. The proposed techniques are designed for fixed window
sizes, hence, when answering multiple sliding window queries with variable window sizes
they have to distribute the available privacy budget accordingly.

Based on the notion of decayed privacy [22], Kellaris et al. [70] defined w-event pri-
vacy in the setting of periodical release of statistics (counts) in infinite streams. To achieve
w-event privacy, the authors propose two mechanisms (Budget Distribution and Budget
Absorption) based on sliding windows, which effectively distribute the privacy budget to
sub-mechanisms (one sub-mechanism per timestamp) applied on the data of a window of
the stream. Both algorithms may decide to publish a new noisy count for a specific times-
tamp, based on the similarity level of the current count with a previously published one.
Moreover, both algorithms have the constraint that the total privacy budget consumed in
a window is less than or equal to ε. The Budget Distribution algorithm distributes the pri-
vacy budget in an exponential-fading manner following the assumption that in a window
most of the counts remain similar. The budget of expired timestamps becomes available for
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the next publications (of next windows). The Budget Absorption algorithm uniformly dis-
tributes from the beginning the budget to the window’s timestamps. A publication uses not
only the by-default allocated budget but also the budget of non-published timestamps. In
order to not exceed the limit of ε, adequate number of subsequent timestamps are ‘silenced’
after a publication takes place. Even though one can argue that w-event privacy could be
achieved by user-level privacy, it is nevertheless non-practical because of the rigidity of the
budget allocation that would finally render the output useless.

Wang et al. [113] propose RescueDP for the publishing of real-time user-generated spa-
tiotemporal data, utilizing differential privacy with w-event-level protection. RescueDP
uses a Dynamic Grouping module to create clusters of regions with small statistics, i.e., ar-
eas with a small number of samples. It estimates the similarity of the data trends of these
regions by utilizing the Pearson’s correlation coefficient and creates groups accordingly.
The data of each group pass from a Perturbation module that injects Laplace noise to them.
The grouping of the previous phase results into the increase of the sample size of each
group of regions, which minimizes the error due to the noise injection. The implemen-
tation of a Kalman Filtering [66] module further increases the utility of the released data.
A Budget Allocation module distributes the available privacy budget to sampling points
within any successive w timestamps. RescueDP saves part of the available privacy budget
by approximating the non-sampled data with previously released perturbed data. During
the whole process, an Adaptive Sampling module adjusts the sampling interval according
to the difference in the released data statistics over the previous timestamps while taking
into account the remaining privacy budget.

Erlingsson et al. [44] presented RAPPOR (Randomized Aggregatable Privacy-
Preserving Ordinal Response) as a solution for privacy-preserving collection of statistics.
RAPPOR makes all the necessary data processing on the side of the data generators by
applying the method of randomized response, which guarantees local differential privacy.
The product of each local privacy-preserving processing is a report that can be represented
as a bit string. Each bit corresponds to a randomized response to a logical predicate on an
individual’s personal data, e.g., categorical properties, numerical and ordinal values, or cat-
egories that cannot be enumerated. Initially, RAPPOR hashes a sensitive value into a Bloom
filter [21]. It creates a binary reporting value, which keeps in its memory (memoization) and
reuses for future reports (permanent randomized response). Memoization offers long-term
longitudinal privacy protection for privacy-sensitive data values that do not change over
time or that are not dependent. RAPPOR deals with tracking externalities by reporting a
randomized version of the permanent randomized response (instantaneous randomized
response). Although this adds an extra layer of randomization to the reported values, it
might lead to an averaging attack that may allow an adversary to estimate the true value.
Finally, the authors propose a decoding technique that involves grouping, least-squares
solving, and regression. This way, they effectively make up for the loss of information due
to the randomization of the previous steps and allow the extraction of useful information
when observing the generated bit strings. They test their implementation with both simu-
lated and real data and show that they can extract statistics with high utility while preserv-
ing the privacy of the individuals involved. However, the fact that the privacy guarantees
of their technique are valid only for stationary individuals that produce independent data
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on top of the relatively complex configuration, renders their proposal impractical for many
real-world scenarios.

Le Quoc et al. [95] propose PrivApprox, a data analytics system for privacy-preserving
stream processing of distributed data sets that combines sampling and randomized re-
sponse. The system distributes the analysts’ queries to clients via an aggregator and prox-
ies, and employs sliding window computations over batched stream processing to han-
dle the data stream generated by the clients. The clients transmit a randomized response,
after sampling the locally available data, to the aggregator via proxies that apply (XOR-
based) encryption. The combination of sampling and randomized response achieves zero-
knowledge based privacy, i.e., proving that they know a piece of information without in
fact disclosing its actual value. The aggregator collects the received responses and returns
statistics to the analysts. The query model expresses the responses of numerical queries
as counts within histogram buckets, whereas, for non-numeric queries it specifies each
bucket by a matching rule or a regular expression. A confidence metric quantifies the
results’ approximation from the sampling and randomization. PrivApprox achieves low
latency stream processing and enables a synchronization-free distributed architecture that
requires low trust to a central entity. Since it implements a sliding window methodology
for infinitely processing series of data sets, it would be purposeful to investigate how to
achieve w-event-level privacy protection.

Li et al. [78] attempt to tackle the problem of privacy preservation in numerical data
streams taking into account the correlations that may appear continuously among multi-
ple streams and within each one of them. Firstly, the authors define the utility and pri-
vacy specifications. The utility of a perturbed data stream is the inverse of the discrep-
ancy between the original and the perturbed measurements. The discrepancy is set as the
normalized Forbenius norm, i.e., a matrix norm defined as the square root of the sum of
the absolute squares of its elements. Privacy corresponds to the discrepancy between the
original and the reconstructed data stream (from the perturbed one), and consists of the
removed noise and the error introduced by the reconstruction. Then, correlations come
into play. The system continuously monitors the data streams for trends to track correla-
tions and dynamically perturbs the original numerical data while maintaining the trends
that are present. More specifically, the Streaming Correlated Additive Noise (SCAN) mod-
ule updates the estimation of the local principal components of the original data and pro-
portionally distributes noise along the components. Thereafter, the Streaming Correlation
Online Reconstruction (SCOR) module removes all the noise by utilizing the best linear
reconstruction. SCOR is a representation of the ability of any adversarial entity to post-
process the released data and attempt to reconstruct the original data set by filtering out
any distortion. Overall, the present technique offers robustness against inference attacks
by adapting randomization according to data trends, but fails to efficiently quantify the
overall privacy guarantee.

Chen et al. [33] developed PeGaSus, an algorithm for event-level differentially private
stream processing that supports different categories of stream queries (counts, sliding win-
dow, and event monitoring) over multiple stream resolutions. It consists of a Perturber,
a Grouper, and a Smoother modules. The Perturber consumes the incoming data stream,
adds noise εp, which is part of the available privacy budget ε to each data item and out-
puts a stream of noisy data. The data-adaptive Grouper consumes the original stream and
partitions the data into well-approximated regions using, also part of the available pri-
vacy budget, εg . Finally, a query specific Smoother combines the independent information
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produced by the Perturber and the Grouper, and performs post-processing by calculating
the final estimates of the Perturber’s values for each partition created by the Grouper at
each timestamp. The combination of the Perturber and the Grouper follows the sequen-
tial composition and post-processing properties of differential privacy, thus, the resulting
algorithm satisfies (εp + εg)-differential privacy.

3.3 Discussion

In the previous sections, we provided a review for each work that falls into the categories
of microdata and statistical data privacy for continuous data publishing. Reviewing the
algorithms and positioning them against specific characteristics, as shown in Table 5 (mi-
crodata), and Table 6 (statistical data), allow us to make the following observations on each
category separately and in general.

In the Microdata category, we observe that problems with sequential data, i.e., data that
are generated in a sequence and are dependent on the values of previously released data
sets, are more prominent. We also encounter here the publishing of updated versions of an
original data set, either vertically (schema-wise) or horizontally (tuple-wise). Naturally, in
such cases the most evident attack scenarios are the complementary release ones, as in each
release there is great probability that there will be an intersection of tuples with previous
releases. In fact, the works based on k-anonymity in this category were designed to address
attacks that are specific to the grouping approach, where groups from different timestamps
may overlap in some ways. In the case of location or trajectory (which are also sequential
data) publishing, many works take into account external information, and more precisely
data correlations before publishing the privacy-protected version of the data.

In the Statistical Data section, all works address attacks in their more general form (link-
age attacks). We notice that the data linkage is currently assumed in the bibliography as the
worst case attack. For this reason, works in the Statistical Data category seem to provide
a robust privacy protection solution, independent of adversarial background knowledge.
The prevailing distortion operation in this category is probabilistic perturbation. This is
justified by the fact that nearly all methods are based on differential privacy. The majority
implements mechanisms based on the Laplacian distribution, while some of them design
more sophisticated probabilistic mechanisms, depending on the data type or accounting
for data dependencies that may lead to extra privacy leakage.

When data dependencies are taken into account, in either category, we observe that the
privacy operation used is mainly probabilistic perturbation, if not total suppression. This
is logical since by generalization the correlation between attributes would not be canceled.
Generalization is used in group-based techniques to make it possible to group more tuples
under the generated categories, and thus achieve privacy protection—which would still be
open to dependence (and other) attacks.

As far as the publishing mode is concerned, problems with streaming processing are not
the most common cases in the Microdata category. Most of the cases that include streaming
scenarios are in the Statistical Data category. A technical reason behind this observation is
that protecting the privacy of a raw data set as a whole may be a time-consuming process
due to size and complexity, and thus not well-suited for streaming. The complexity actually
depends on the number of attributes if we consider the possible combinations that may be
enumerated for the generalizations. On the contrary, aggregation functions, as used in
the Statistical Data category and especially in the absence of filters or other operations on
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top of these aggregation functions, usually are low cost. Moreover, perturbing a numerical
value (the usual result type of an aggregation function) does not add a lot in the complexity
of the algorithm (depending of course on the perturbation model used). For this reason,
perturbing the result of a process is more time efficient than protecting the privacy of the
original data set itself and then running the aggregation process on the privacy-protected
data.

4 Conclusion and open issues

In this survey, we present a comprehensive review of works regarding data privacy-
preserving algorithms for continuous data publishing. In such problem settings, location-
related data is prevalent due to the establishment of technologies generating continuous
geo-tagged data, e.g., connected personal portable devices. We have discussed how the
nature of the released data set, i.e., raw microdata or statistical results thereof, dictates the
choice of the base computation privacy algorithm to use, i.e., k-anonymity or differential
privacy (in the majority of the cases), and the related privacy operations. We have further
categorized the relevant works based on the fashion that we observe the data (finite or
infinite), and the processing modes and architectures they consider. We have listed the
achieved privacy levels and attack models while paying special attention to how data cor-
relations can be exploited by an adversary, something that inevitably appears in continuous
data publishing. Our goal is to aid researchers and practitioners in the field to easily iden-
tify the proper algorithm(s) to use according to the scenarios that they have at hand, and
the nature of the data that they have to process. We culminate this survey by discussing
fields for further work on the subject.

Reviewing the two axes (microdata and statistical data) of privacy-preserving mech-
anisms side by side, we observe the prevalence of techniques based on randomization
and probabilistic distributions. This prevalence is justified even more in the context of
continuous data publishing because in these scenarios data might involve correlations and
generate background knowledge that can be used for further privacy leakage. For the same
reasons, we have observed that over the last years researchers tend to take into account cor-
relations more than before. Certainly, there is space for progress in this field since several
works mention correlations quite vaguely without computing the extra privacy loss due
to the correlations or take into account only one type of correlations. More particularly,
defining the appropriate privacy expectation is of critical importance. Indeed, generalizing
the idea of exploiting linkage or correlations among various sources of data and privacy-
protected data sets introduces a series of open research problems.

From a different perspective, we have observed that most of the existing literature em-
phasizes on the effectiveness of the proposed methods by focusing on their privacy guar-
antees and/or their impact on the data quality. Given that quantifying and balancing these
remains a difficult (and in many cases application dependent) problem, the interest in this
area is expected to increase in the future. In general, differential privacy guarantees an up-
per bound of privacy loss from the released output. However, its quality depends not only
on the given privacy budget but also on the query, and the mechanism itself. Similarly for
k-anonymity, k defines the worst-case protection of an individual and the quality is usually
quantified by either the discrepancy between the privacy-protected and the original data
set or by the difference in the utility of the two data sets. In our area of interest, we have
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come across some works that employ methods to enhance the quality of the distorted an-
swers, e.g., by smoothing the results or by specializing the originally generalized attributes
(the latter being microdata specific). Further work can be done in this direction to make the
results more useful in practice while not degrading the level of privacy protection. Another
direction that should be more actively considered is the algorithmic efficiency, a parameter
that is hardly discussed but is vital for continuous data publishing, especially for streaming
scenarios, where performance is always an inherent part of the solution. Finally, comparing
the techniques reviewed in Section 3.1—Microdata with the ones in Section 3.2—Statistical
Data, and as observed in Table 5 and Table 6, the latter are more common for data that are
generated in streaming mode and need (near) real-time processing.

Last but not least, we observe that little work has been done that combines the two
main methods, i.e., k-anonymity and its derivatives, and differential privacy. In general,
k-anonymity provides the possibility of sharing a whole data set, which is important in
research for experimental evaluation. Nevertheless, differential privacy provides more
robust privacy guarantees, especially in the presence of external information. While we
acknowledge their applicability to different types of data and problems, it would be chal-
lenging and interesting to see how these methods could be integrated into a common
framework to provide case- and user-specific data privacy solutions. For example, such a
dynamic framework would decide, either automatically or by manual tuning, the privacy-
preserving algorithm to use (or a combination thereof) based on the attributes or applica-
tion domains, on the user privacy requirements and on the likelihood of finding external
sources of information.
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