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Abstract: Map labeling of point features is the problem of placing text labels to correspond-
ing point features on a map in a way that minimizes overlaps while satisfying basic rules
for the quality. This is a critical problem in the application of cartography and geographical
information systems (GIS). In this paper we study the fundamental issues related to map
labeling of point features and develop a new genetic algorithm to solve this problem. We
adopt a method called convex onion peeling and utilize it in our proposed convex onion
peeling genetic algorithm (COPGA) to efficiently manage map labels of point features. The
proposed algorithm takes advantage of a convex onion peeling structure to achieve better
map label initialization and to enhance the evolutionary process. The performance of the
proposed algorithm was evaluated through extensive experiments on both synthetic and
real datasets. In experiments with an implementation of our algorithm using OpenMap,
the results show that our genetic algorithm, based on convex onion peeling, is an efficient,
robust, and extensible algorithm for automated map labeling of point features.
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1 Introduction

Placing text labels with corresponding features, i.e., points, lines, or polygons, is a critical
task in graphics, cartography, and geographic information systems (GIS). Labels are essen-
tial components in a map for delivering information to users. Hence, map labeling needs to
avoid label-label and label-point overlaps so that users can easily identify the correspond-
ing label associated with each feature.

Map labeling makes up a large proportion of map production. Although many solu-
tions have been proposed for automated map labeling, placing labels is still performed
manually in many applications. This is because the human brain is better suited to man-
aging the conflicting requirements of map labeling (legibility, ambiguity, aesthetic aspects,
and avoiding overlaps) than any automated techniques available today. However, manual
resolution of label conflicts is time-consuming and expensive. Hence, developing efficient
methods for automated map labeling is a central problem in many applications of cartog-
raphy and GIS. Automatic map labeling requires a combination of methods from various
research areas such as cartography, geosciences, computational geometry, and computer
science. Solutions to this problem can also be beneficial to other application domains in-
cluding graph diagrams, architectural drawings, and medical image analysis.

Map features to be labeled could be points (e.g., cities), lines (e.g., streets), or poly-
gons (e.g., countries). The combinatorial aspect of map labeling should consider all these
features in order to provide a proper map labeling method. As a result, solutions to the
general map labeling problem are complex. This paper focuses on point features (which
are also referred to as sites) by simplifying the general map labeling problem to map label-
ing of point features. The problem becomes more complex and challenging when the map
has background objects. In our paper, we only consider points (sites) and corresponding
labels as main constraints.

Due to the high degree of freedom in placing each label, map labeling of point features
is a complex combinatorial problem where a search space and a cost function need to be
defined. It has been proven that finding the optimal solution to automated map labeling
is NP-hard [16, 22]. It is therefore reasonable to resort to approximate solutions based on
heuristics. There are three main components to the point-feature map labeling problem: 1)
the solving methods, for example, hill climbing [18], simulated annealing [10] or a genetic
algorithm [18]; 2) the constraints (completeness), the way label positions are computed;
and 3) the quality of initial positioning and repositioning. Our paper focuses on a solution
to computing the initial position and repositioning based on a genetic algorithm.

Several studies based on genetic algorithms [18, 26] have discussed map labeling of
point features and have shown promising results. However, little research has been done
on developing good structures in order to solve the map labeling problem. In this paper, we
develop a structure that can efficiently manage map labels to create better initial positions
and improve the performance of the evolutionary process in genetic algorithms.

Our approach is based on a simple observation in which labels tend to be placed away
from each other in order to avoid conflicts. Suppose that we have two labels, label1 and
label2, which need to be placed near to the corresponding points (sites). In Figure 1a, we
place label1 at a left-upper position of its corresponding point, then a right-lower position of
the other point might be one of the possible positions for label2. Similarly, Figure 1b might
be a solution to map labeling placement for four points. The idea is to group the points into
layers and start placing labels to corresponding points towards the outer direction of each
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Figure 1: A heuristic approach to map labeling

layer while keeping the labels away from the other labels and points. If we have a small
number of points, achieving this goal seems simple. However, this is not the case in more
complicated real world cases. Figure 1c shows an example of eight points where additional
techniques need to be considered for placing the labels.

In this paper, we define the search space and a cost function for map labeling of point
features. Our cost function is based on two important principles of map labeling: overlap
avoidance and unambiguity. To minimize this cost function, we consider the following
important aspects of a genetic algorithm:

• Initialization: generating a good initial population (positions of labels) can result in a
better solution;
• Selection: exploring constraints vs. non-constraints in the search space of label posi-

tions during the evolutionary process; and
• Global optimization: managing the local optimal trap (no improvement after a certain

number of evolutions), from which any genetic algorithm may suffer [11].

We propose a genetic algorithm that utilizes convex onion peeling structure [9] to man-
age point feature labels. The convex onion peeling structure produces better initial map
label populations (fewer number of conflicts in the initially generated population) in our
experiments, regardless of map labeling algorithms used: hill climbing [18], simulated an-
nealing [10], a genetic algorithm [18] and our proposed genetic algorithm. Hence, convex
onion peeling can be also applied independently for improving other existing map labeling
algorithms. Adopting the convex onion peeling technique also enhances the evolutionary
process of the genetic algorithm, which results in faster convergence to the optimal solu-
tion for map labeling of point features. Our proposed algorithm is empirically evaluated,
compared to three well-known map labeling algorithms through extensive empirical ex-
periments. The results illustrate that our approach is a robust and efficient solution for
map labeling of point features.

The remainder of this paper is organized as follows: related work is discussed in Section
2 and the problem is formally defined in Section 3. The search space and our cost function
for the map labeling problem are also defined in Section 3. In Section 4 we present the
convex onion peeling structure and our proposed algorithm. The proposed algorithm is
experimentally evaluated in Section 5. Finally, Section 6 concludes the paper.
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2 Related work

Placing text labels to point features is a well-studied problem and many researchers have
proposed various algorithms to solve this problem. While detecting conflicts is the pri-
mary goal of a labeling algorithm, it is also beneficial to utilize cartographic knowledge to
improve the overall readability. General cartographic principles for map label placement
have been defined in [19] and are listed below:

• Legibility: Labels must have legible font sizes and be positioned in a way that is easily
read.
• Unambiguity: Each label must clearly identify a single feature and not interfere with

any other label or feature. Label positions to the right of a point feature are preferred
to those on the left. Labels above point features are preferred to those below.
• Overlap avoidance: A label should not overlap with any other label or feature.
• Aesthetics: Labels should not be overly clustered or distract from map features.

In our paper, we provide a solution to map labeling of point features that minimizes over-
laps while satisfying basic rules such as unambiguity, legibility, and aesthetics for the clarity
of a map.

Popular solutions to the map labeling problem using a rule-based approach were pro-
posed in [1, 2, 13]. The authors in [31] represented the map labeling problem as follows:
each site is represented as a point in the plane and the task is to find a square width w for
a set of n squares such that every point is a corner of exactly one square and all squares
are pairwise disjoint. Their definition disallows any overlaps between labels. This version
of the problem was shown to be NP-hard in [16] and an O(n log n) running time approxi-
mation algorithm was proposed. The approximation algorithm finds a valid labeling of at
least half of the optimal size.

Another type of map labeling called boundary labeling was presented in [7]. The prob-
lem was to label point sites with large labels placed around the map and connected to
corresponding sites through polygonal lines that do not intersect. This problem is a com-
bination of label-placement and graph drawing problems. The authors provided different
versions of their algorithms and compared the running time of each.

The hill climbing algorithm [18] is a simple local optimization algorithm. The algorithm
begins with an initial, random placement of labels. It then searches through the adjacent
new solutions generated randomly from the current solution and selects the optimal solu-
tion. The algorithm continues searching for new solutions until no improvement is found
from the current solution.

In [10] a heuristic method to the optimization of the map labeling was proposed based
on simulated annealing [20]. The quality of the proposed labeling method was quantified
using a metric that calculates a scoring function based on the number of conflicts of labels
with sites and labels with labels. The scoring function also takes into consideration the
label position preference and adds a penalty to the score whenever a label is placed in
a non-preferred position. The main advantages of simulated annealing over others are
shown to be the simplicity of implementation and the generality of the method that can be
applied to any feature (point, line, and area). Another advantage of simulated annealing is
that it may escape from local minima.

Genetic algorithms are strategies for function optimization based on genetics and Dar-
win’s theory of evolution. A genetic algorithm works in parallel on a population of can-
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didate solutions from the search space [14]. There are many variations; however, most of
them suffer from the same difficulty: the local minimum trap [11].

A genetic algorithm for labeling point features was proposed in [26]. Their approach is
based on three main phases. The preprocessing phase in which a conflict table is created
for the initial positioning of the labels to reduce the search space. Second, the population
generation is performed based on a selection, recombination, and mutation evaluation. Fi-
nally, each newly generated solution is locally improved before its evaluation. The authors
compared their solution to the simulated annealing approach and have shown that their
genetic algorithm provided slightly better solutions than simulated annealing. However, it
required more CPU time.

Another genetic algorithm for automated map labeling of point feature was proposed
in [18]. The authors compared their approach to previously proposed algorithms based
on hill climbing, simulated annealing and random algorithms and showed by experimen-
tal results that their proposed algorithm outperformed the other approaches in terms of
number of conflicts.

A good introduction to genetic algorithms can be found in [30], where the authors ap-
ply genetic algorithms to solve different GIS problems including the point-feature map
labeling problem. The authors defined the “fitness” measurement as the number of non-
conflicting labels, which in their search space includes four fixed locations with each label
placed initially randomly. Through experimental results, the authors demonstrated that
their proposed algorithm performs as well as simulated annealing. It was also tested on a
map of US cities, demonstrating how their proposed algorithm can be modified to take into
consideration “soft” constraints (such as top-left preferred position of a label) and deleting
labels whenever the map is too crowded.

A comprehensive survey of map labeling algorithms can be found in [11]. The paper
discussed the NP-hard nature of the map labeling problem and the exponential time com-
plexity of heuristic solutions. It also proposed two algorithms: one based on discrete gra-
dient descent and the other based on simulated annealing that were empirically evaluated
along with other previously proposed solutions. Extensive experimental results showed
that none of the map labeling algorithms outperforms the others in all cases. For example,
their experiments showed that simulated annealing algorithms should be favored over the
other alternatives when solution quality is important.

A method based on the “slider model” for map labeling was presented in [28] in which a
label is placed in any position that touches the site to be labeled. Their proposed algorithm
offers more flexibility in the search space as opposed to several fixed locations defined for
a label position. However, the authors consider line segments (e.g., state boundary) as
obstacles that cannot be intersected by any labels. Given n number of points to be labeled
and m number of line segments to be avoided, the main contribution is a preprocessing
step algorithm that runs in O((n+m) log(n+m)). The authors also extended their solution
to support labels of different font sizes.

In [15], the authors provided a label placement approach that can be applied to general
cartographic maps that include point, line, and area features. In their presented framework,
the authors identified three subtasks for their map labeling algorithm: candidate-position
generation; position evaluation (a score that indicates the quality of a label); and finally
position selection to choose a label position from a set based on the overall quality of the
labeling.

JOSIS, Number 2 (2011), pp. 3–28
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An evolutionary algorithm that supports different user objectives was presented in [8].
Their approach provided a set of solutions based on three main criteria which are: maxi-
mizing the font size of the labels; maximizing the clarity of bindings (telling which label
belongs to which feature on the map); and minimizing the number of conflicts. The authors
illustrated the result of their methods on two maps.

A heuristic approach has been developed recently for finding good solutions to point-
feature labeling [3]. The computational complexity of this method grows quasi-linearly
with the number of labels and quadratically with the label density.

The authors of [12] developed a rule-based system using Prolog to place names on dif-
ferent types of maps such as road maps and county maps. Their system’s rules depend
on the spatial relationship between the feature to be labeled and the name (label) to be
placed. Thus, the authors have developed a spatial database that their system accesses in
order to find non-conflicting positions of the labels. The main drawback of their proposed
solution to map labeling is that it is based on exhaustive searching and run time might be
unacceptably long. This was solved by either subdividing the problem into subproblems
(each consisting of a set of labels to be placed), or by a preprocessing step that sorts the
labels in some predefined order.

In [24, 25] the authors solved the dynamic map labeling problem in which maps are af-
fected by continuous zooming (change of state) and panning (change of region of interest)
operations. They proposed a two phase solution to the problem: the preprocessing phase
and the interaction phase. In the first phase, the authors construct the reactive graph, a
data structure that is used to detect conflicts. In the interaction phase, the reactive graph is
queried for conflicts and the subset of labels that can be placed without conflicts are cho-
sen in a greedy approach. This work was the predecessor for recent research on dynamic
map labeling that was presented in [6]. A framework for dynamic labeling that allows for
fast interactive display of labels was proposed. This was achieved by performing all the
selection and placement decisions in a preprocessing phase.

Similarly, the authors in [32] presented a solution to real-time map labeling using the
slider method on continuous search space to label points and line features. Their proposed
method aimed to provide an online solution for mobile devices with small screens. They
start with arbitrary positions of labels defined by a fixed four positions search space. Then,
the best possible position for a label is identified based on normal cartographic preference
where candidate positions are reduced to avoid conflicts. The authors’ proposed method
was demonstrated through a case study. However, it was not compared to other previously
proposed models in terms of efficiency (both visually and computationally).

Our previous work [4] proposed an efficient solution to map labeling of point-features.
We adopted convex onion peeling structure in our proposed genetic algorithm to efficiently
manage point-features of a map. This paper extends our previous work and provides
a comprehensive study of convex onion peeling genetic algorithm. We present a thor-
ough explanation of the use of the genetic algorithm for map labeling of point features. To
demonstrate the overall quality of map labeling generated by our algorithm, the algorithm
was implemented on top of a real map application.
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3 Problem definition: Map labeling of point features

The point-feature map labeling problem consists of a set S of n sites in the plane S =
{s1, s2, ..., sn} and a set L = {l1, l2, ..., ln} corresponding to the sites. Our objective is to
place each li near the corresponding si within a search space while minimizing a cost func-
tion.

A solution is a subset S′ ⊆ S of sites and a function λ which maps every site si ∈ S′ to a
label λ(s) ∈ L, such that no label conflicts with another label or with a site. A number of la-
beled sites, i.e., the cardinality of S′, is the number of the labels that are successfully placed
in a map. An optimal labeling is a solution having the maximum size among all labeling
solutions. A complete labeling is a solution where every site receives a label without any
conflicts.

This problem can be thought of as a combinatorial optimization problem where a search
space and a cost function need to be defined. As mentioned in Section 2, detecting conflicts
is not the only goal of a labeling algorithm; utilizing cartographic conventions is also impor-
tant to improve the overall readability. Hence, we develop methods to minimize overlaps
while satisfying other basic cartographic rules for the map quality.

δ
�i

site

Pll

Pur
vh

v’c MBBi

Figure 2: Notations for labels

3.1 Search space

We first discuss basic notations and structures in placing a label to a site that are used in our
paper. The minimum bounding box (MBB) [17] of label li is the smallest box that encloses
text label li, and is denoted by MBBi. MBBi is represented by two corner points, Pll (lower-
left corner) and Pur (upper-right corner). Let δ be the distance between the center of site
si and the closest point on MBBi of the label li as shown in Figure 2. In this paper, we
use a fixed value of δ for all labels. The upright vector vh from the site and the vector v

′
c

connecting the site to the closest point on MBBi create an angle Θi.
Next we define the search space for labeling positions and present our cost function. A

label candidate is one of many possibilities to place a label for a certain site. We define two
different models of the search space: 1) continuous space (use an infinite number of candi-
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Figure 3: Search space for label positions

dates); and 2) discrete space (use a discrete number of label candidates). For the discrete
number of label positions we use eight positions in this paper so as to give fair comparisons
to previously proposed algorithms. The algorithm could perform better if we increase the
number of label candidates. Figure 3a and b show examples of a continuous and a discrete
search space, respectively. The two models are used in our proposed algorithm as follows:

• Initialization: The continuous space model is used for generating initial label posi-
tions for all sites. For each label li, any value between 0 and 360 is assigned as its
Θi.
• Selection: The discrete model is used for possible positions in the mutation step of

the evolutionary process.
• Global optimization: The continuous space model is used for the inverse of the search

space in the inversion step of the evolutionary process.

3.2 Cost function

It is only possible to approximate solutions when the problem admits a cost function—
that is, a measure of how far the solution is from an optimal solution. The usual scenario
is to count the labels that conflict with each other or with sites. Much of the previous
work considered two of the main principles of map labeling [19], overlap avoidance and
unambiguity, for solving map labeling of point features. For a cost function, there must be
some trade-off between the two principles, and the solution might be varied depending on
the applications. In our paper, we focus on overlap avoidance while we balance these two
principles. Our approach is to provide a solution to map labeling of point features in a way
that minimizes overlaps while satisfying basic rules for the map clarity.

The task of the evaluation step for labeling is to detect all conflicts and rate the label
candidates accordingly. The evaluation process has to detect the following categories: 1)
conflicts of a label candidate with other labels (label-label); 2) conflicts of a label candidate
with sites other than the associated site (label-site); and 3) aesthetic preference and tradi-
tion. The outcome of this evaluation can be used in a cost function to assign a particular
value to each label candidate describing its overall suitability.

Let C be a set of n label costs, C = {C1, C2, ..., Cn}, where Ci is the cost of li’s position.
The parameters for a label cost are defined as follows:
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• cli: the number of conflicts of li with ∀lj ∈ L \ li;
• csi : the number of conflicts of li with ∀sj ∈ S \ si; and
• pi: a penalty for preferred location. Positions in the 1st quadrant (0 ≤ Θ ≤ 90) are

considered as preferred positions and the penalty values of these positions are set to
0 and all the rest of the positions have penalty equal to 1.

Ci is then calculated as follows: Ci = a1 · cli + a2 · csi + a3 · pi, where a1, a2 and a3 are
constant factors (see below). The cost function for the map labeling is

∑n
i=1 Ci. Hence, we

define a cost function F (S) for a given set of sites S as follows:

F (S) =

n∑

i=1

(a1 · cli + a2 · csi + a3 · pi)

We give more value to label conflicts (1.0 and 1.0 are used for the values of a1 and a2,
respectively) as opposed to unambiguity (0.1 is used for the value of a3) in our experiments.
The main reason for this setup is that we want to reduce number of conflicts quickly by
relaxing label positions in the initialization step and the evolutionary process. Then we
try to keep a low number of conflicts while we seek a better solution (a greater number of
preferred positions).

Of course, different weight values for the penalty on non-preferred positions could be
used. This could improve the quality of maps but it might require greater numbers of
evolutions. Since the same cost function is applied in all our experiments, the comparisons
should be fair to all the algorithms.

To simplify the discussion, we made the following assumptions: 1) sites are all point
features; 2) all labels are equally important; 3) text sizes of all labels are the same, although
our implementation can support different sizes for label texts.

4 Convex onion peeling genetic algorithm (COPGA)

In this section, we present the convex onion peeling genetic algorithm (COPGA) that
adopts a genetic algorithm with the search space and cost function defined in Section 3.
COPGA provides a solution to the basic elements of the genetic algorithm by utilizing the
convex onion peeling structure.

The COPGA algorithm consists of three main steps: convex onion peeling construction,
initial population generation, and evolution. The following is an outline of these steps:

1. Convex onion peeling (COP) construction: Construct the convex onion peeling
structure of the sites in a given map (line 2 in Algorithm 1). An example of
COP structure is shown in Figure 4.

2. Initial population generation: Generate a population of candidate solutions, where
each solution is a vector of labeling positions. Each candidate solution in a genetic
algorithm is represented as an individual (or chromosome) of a population [14]. Let
P (t) be the population of individuals at generation t, where t is the generation index
and t = 0, 1, 2, .... Then the initial population is P (0). P (0) is evaluated using the cost
function, and the best candidate solution’s cost is returned as the cost of the current
population CPt (lines 3–5 in Algorithm 1).

JOSIS, Number 2 (2011), pp. 3–28
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3. Evolutionary process: This step applies if the evaluation result of P (0) does not sat-
isfy the terminal condition. In the evolutionary process, an offspring population is
generated by means of selection and search operators. The main search operators are
cross over and mutation [8, 23]. The following describes the evolutionary process:

3.1 Generate an offspring population P (t + 1) from the parent population P (t)
using selection methods and search operators (cross over and mutation). There
are intermediate populations generated during the evolutionary process: P 1,
Pm, P 2, and P 3. If no improvement is made for some number of evolutions, we
inverse the search space for mutation to get out of the local optimal trap (lines
6–14 in Algorithm 1).

3.2 A number of offspring or parents survive this natural selection, and the rest
are discarded. The surviving solutions become the new parents for the next
generation. This selection process is based on the evaluation of the cost function
and the cost CPt is calculated (lines 15–16 in Algorithm 1).

3.3 Evaluate the offspring population using the cost function. A comparison of each
solution’s cost is made using the algorithm’s cost function (line 17 in Algorithm
1).

3.4 Repeat these steps until the termination condition has been satisfied.

The detail of each step of COPGA will be discussed in the following subsections.

Algorithm 1 COPGA(S, L); a set of sites, a set of labels
1: N ← 100; t← 0 {population size; # of evolutions}
2: COP ← constructCOP(S)
3: P (0)← initializeSites(COP , L, N )
4: P (t)← P (0)
5: CPt ← evaluate P (t)
6: while termination condition not satisfied do
7: P 1 ← selectForCrossOver(Pt)
8: Pm ← selectForMating(P 1)
9: P 2 ← crossover(Pm)

10: if local optimal trap condition then
11: P 3 ←mutate(P 2) with inversion
12: else
13: P 3 ←mutate(P 2) without inversion
14: end if
15: P (t+ 1)← selectReplacement(P 3, P (t))
16: P (t)← P (t+ 1)
17: CPt ← evaluate P (t)
18: t← t+ 1
19: end while
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4.1 Convex onion peeling construction

The convex onion peeling of a set of points is the organization of these points into a se-
quence of interpolating convex polygons (a structure that consists of a sequence of nested
convex hulls) [9]. This structure on a set S of n points is obtained by the following pro-
cedure: compute the convex hull of S, and let S′ be the set of points remaining in the
interior of the hull. Compute the convex hull of S′ and recursively repeat this process
until no more points remain. One ends up with a sequence of nested convex hulls, called
the convex onion peeling of S. This structure can be obtained in O(n log n) time [9]. The
convex onion peeling technique has been widely used in many application domains, e.g.,
image processing, pattern recognition, photo image analysis [21], and the study of Earth’s
atmosphere [27].

COPGA first constructs a sequence of nested convex hulls for the sites (S) in a map (con-
structCOP(S) in line 2 of Algorithm 1). We refer to this structure as convex onion peel-
ing (COP ) of the sites. Sites in a map are divided into several groups (nested layers)
using the convex onion peeling technique. Figure 4 illustrates an example of construct-
ing a map’s COP, where the COP consists of sequence of convex hulls (layers), COPmap=
{layer1, layer2, layer3}, and the layers are as follows: layer1 = {S1, S2, S3, S4, S5, S6}, layer2 =
{S7, S8, S9, S10}, and layer3 = {S11, S12, S13}.

layer 1

layer 3

layer 2

S5

S6

S1

S2S3

S4
S7

S8

S10

S9

S11

S12

S13

Figure 4: Convex onion peeling construction

4.2 Initial population generation

Two well-known initialization techniques are commonly used in many of the proposed
algorithms for the map labeling problem of point features: preferred position (upper-right
position) and random position. A new initialization technique is used in COPGA and its
performance is compared to those of the two existing techniques in Section 5.

COPGA calculates the initial position of each site’s label based on the convex onion peel-
ing. Figure 5a shows how to calculate a label’s initial position. Each site is associated with
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three vectors; v1 and v2 are related to the neighbor sites, sj and sk, in the layer and vc is the
half of the inner angle φ. Then the opposite vector v

′
c and the vertical vector of the site vh

determines the angle Θi as discussed in Section 3.1. A label’s initial position is determined
based on the value of Θi; an example of the initialization result is shown in Figure 5b.

The convex onion peeling provides an efficient geometric structure for placing labels
to reduce the possibility of conflicts by placing labels outside of each layer. It also allows
us to solve the problem in a divide and conquer manner; it places the labels to the sites of
each layer and combines all label positions for an initial solution to the whole map labeling
problem. Convex onion peeling initialization is compared to two other initialization tech-
niques, preferred position and random position. Our experimental results show that onion
peeling initialization always results in less conflicts than preferred position and random
position.

Each individual solution is a vector of labeling positions corresponding to the sites. The
cost of the initial population P (0) is calculated and this is assigned to the cost of the current
population CPt . If CPt does not satisfy the termination condition, the evolutionary process
of COPGA starts (line 5–6 in Algorithm 1).

δ
�i

Ø

Ø

1
2

1
2vc v2

v1

v’c

si

sk

sj

li
MBRi

vh

(a) Calculate a label position

layer 1
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(b) Generate initial population

Figure 5: Label positions using convex onion peeling

4.3 Evolutionary process

In the evolutionary process, the new generation P (t + 1) is obtained from the population
P (t) by means of the following steps: 1) selection for cross over; 2) cross over; 3) mutation
and inversion; 4) selection for replacement and survival; 5) evaluation.

4.3.1 Selection for cross-over

The individuals of population P (t) are selected for cross-over according to their costs. Se-
lected individuals represent an intermediate population P 1 (line 7 in Algorithm 1). Then
based on a given probability (cross-over probability pc = 0.5), a certain proportion of indi-
viduals from P 1 enter the mating pool for cross-over. This mating pool represents another
intermediate population Pm (line 8 in Algorithm 1).
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Figure 6: Example of a cross over (a number on each individual represents the value of Θ
for each label)

4.3.2 Cross-over

The cross-over operator [14,23] is used to create new individuals by combining the genetic
information of two parents. The individuals from Pm are mated using the cross-over
operator (line 9 in Algorithm 1). Cross-over on the pair for mating (two solutions of map
labeling) is conducted based on each layer of the convex onion peeling. Our algorithm
does not allow cross-over across the layers. Sites are chosen with a probability from
each layer of one individual (one solution of map labeling). The corresponding sites in
another individual are chosen accordingly. Then two new individuals are created by
switching the label positions of the selected sites from the two existing individuals. New
individuals from cross-over on Pm are included in P 2. Figure 6 shows an example of the
cross-over in the COPGA algorithm. Let Pi and Pj be the chosen two parents (two chosen
individuals). Sites in each layer of the onion peeling of the two parents are selected based
on the proportion. From Pi and Pj , the algorithm selects the second, sixth, and 10th sites
in layer1, the second and sixth sites in layer2, and second, sixth, and 10th sites in layer3.
Two new individuals, P

′
i and P

′
j , are generated by exchanging the labels’ positions of these

chosen sites. For example, the second site in layer1 of Pi and the second site in layer1 of Pj

have 80 and 22 as the Θ values of their label positions, respectively, before the cross-over.
The cross-over process switches these two positions (Θ values). As a result, the Θ value of
the second site’s label in layer1 of the newly generated individual solution P

′
i is set to 22.

Similarly, the Θ value of the second site’s label in layer1 in another individual solution P
′
j

is set to 80.
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4.3.3 Mutation

The mutation operator [14, 23] generates new individuals by variations (labels’ position
changes) of a single individual with the probability of mutation pm = 0.1. Let P 3 be the
population obtained by applying mutation and, possibly, inversion to P 2 (line 10–14 in
Algorithm 1). The selected label’s position is replaced with a new position.

Considering all eight possible locations shown in Figure 3b, this change could cause
more conflicts because most labels tend to be outside of the convex hull. Hence we modify
the search space by removing the angle φ resulting in only positions outside of the convex
hull. No significant effect on the freedom of the search space is found since the convex hull
always creates outer angles greater than 180◦. Hence there are always at least four possible
label positions available. Figure 7 shows an example for the search space by mutation. In
this example, the positions 4, 5, and 6 are removed from the candidates of the positions.
We also investigate another approach, a greedy approach, for the selection of mutation.
All conflicted labels are retrieved and random selection for mutation is conducted on these
conflicted labels.

δ

site 2

3

1

4

2

3

7

6

5

8

Figure 7: Mutation

4.3.4 Inversion

Convex onion peeling does not work well when the sites in the adjacent layers are too close,
resulting in labels tending to be shifted in similar directions. The methods for initialization,
recombination, and mutation are all based on convex onion peeling structure. Hence it may
not be easy to resolve this problem. We relax this restriction when the algorithm reaches a
possible local optimal trap and no better solution is obtained after a certain number of evo-
lutions (0.3 ∗ number of initial conflicts used in our experiments). In that case, we configure
the label positions so that the search space for the conflicting labels is changed to the inner
space. Figure 8 shows an example of the unsolved problem and our solution by using the
inverse of the search space.
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Figure 8: Unsolved local conflict and inverse space

4.3.5 Selection for Replacement and Survival

The selection for replacement operator is used to obtain which individuals from P (t) and
their offspring will effectively enter the new generation P (t + 1). The new generation
P (t + 1) contains the individuals of the population P 3, and may include other selected
individuals. COPGA keeps the subset of the individuals from P (t) that have not been
selected for cross-over as part of P (t+ 1).

4.3.6 Evaluation

COPGA then computes the quality (the cost) of each individual of the current population
and assigns the cost of the best individual to the cost of the current population CPt . The
evolutionary process continues until CPt satisfies the termination condition.

5 Performance evaluation

In this section, we evaluate the performance of the convex onion peeling genetic algorithm
(COPGA). We first show the results of our initialization using convex onion peeling on
three well-known existing algorithms and then present the results of COPGA compared to
a previously proposed genetic algorithm (GA) [18].

5.1 Datasets and experimental methodology

In our experiments, we considered both synthetically generated maps and real maps. The
number of sites in the synthetic datasets were varied between 40 and 160, and the sites’
locations were distributed uniformly and independently. For each size of the synthetic
datasets, we randomly generated 100 maps and conducted 100 trials for each experiment.
Then the average values were reported. Our real datasets were obtained and extracted
from USGS [29]. Table 1 presents the details of the real datasets. Each dataset was scaled
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to fit into a given boundary of the map with a size of 650 x 650 pixels. For each dataset, we
conducted 100 trials for each experiment and reported the average values.

Real data Region Boundary (latitude, longitude) # Sites
Lower-left Upper-right

Dataset 1 Englewood, CO (26.00, -122.00) (48.00, -75.00) 73
Dataset 2 New Jersey, NY (20.00, -110.00) (48.00, -43.10) 116
Dataset 3 North America & Europe (20.00, -100.00) (68.00, -3.10) 161

Table 1: Real datasets

Although our algorithm supports different font styles and sizes of map labels, we only
present the results with the following setup for sites and labels due to space considerations:
1) sites were represented by circles with radius equal to three pixels; 2) the font style was set
to “courier,” the font size was set to 10, and a random length between six and 15 characters
were used for labels; 3) δ = 3 pixels was used for the distance between the center of a site
and the closest point on the corresponding label’s MBB. Similar qualitative and quantitative
trends were observed in all other experiments.

To compare the effect of initialization, we implemented three existing map labeling al-
gorithms, hill climbing (HC) [18], simulated annealing (SA) [10] and a genetic algorithm
(GA) in [18] by applying the three initialization methods. The common performance met-
rics for the map labeling problem are the values of the cost function F (S), the CPU time,
and the number of evolutions. However, different algorithms use various implementation
characteristics and parameters. Both CPU time and reduction rate were used for the termi-
nation condition of HC. For SA, we set the initial temperature to 2.5 and the temperature
drop rate was 0.2. These values are the same values used for the SA algorithm in [10]. Nor-
mal temperature drop and sudden temperature drop were set to five times the number of
sites and one times the number of sites, respectively. As described in [10], these values were
chosen primarily to provide reasonable execution times and the parameters of annealing
have a relatively minor affect on the performance of the algorithm. To make comparisons to
SA, we also set parameters of the GA and COPGA according to the descriptions in [10], which
were determined by preliminary tests and found to be robust and well suited for GA and
COPGA. We applied inversion after a certain number of evolutions failed to find a new best
solution (0.3 times the number of initial conflicts was used in our experiments). Table 2
summarizes the parameters used for each map labeling algorithm in our experiments.

5.2 Results of initialization

First, we present the results of our proposed map initialization method using convex onion
peeling compared with two other initialization methods, preferred position (default) and
random position.

We conducted the three initialization methods on the synthetic and real datasets. Figure
9 shows the average costs after initialization of synthetic datasets computed using F (S) in
equation 1. On average, convex onion peeling initialization resulted in 26.04% and 15.22%
reduction over default and random initialization, respectively. In addition, the initializa-
tion using onion peeling produced less conflicts than the default and random initialization
methods in all cases.
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Algorithms Parameters
HC Termination 1) Given CPU time; 2) given reduction rate
SA Initial temperature 2.5

Temperature drop rate 0.2
Normal (sudden) tem-
perature drop

5 times number of sites (1 times number of
sites)

GA Population 100
Cross-over Uniform cross-over with Pc = 0.5
Mutation Random replacement with Pm = 0.1 on con-

flicted labels
Termination Cost = 0 or 1000 evolutions

COPGA Population 100
Cross-over onion peeling cross-over with Pc = 0.5
Mutation Onion peeling random replacement with

Pm = 0.1 on conflicted labels
Termination Cost = 0 or 1000 evolutions
Inversion # Evolutions (0.3× # initial conflicts) without

finding a new best solution

Table 2: Implementation characteristics and parameters

Figure 10 illustrates the performance of default, random, and convex onion peeling ini-
tializations using the synthetic datasets. Figure 10a and b show the comparisons of HC us-
ing the three initialization methods. In Figure 10a, we plotted the average conflict costs of
HC after 10 seconds of CPU time along with the initial costs. For example, when the num-
ber of sites is 110, the final costs with default, random, and convex onion peeling are 6.5,
5, and 2, respectively. The overall cost reduction rates using default, random, and convex
onion peeling initializations were 75%, 81%, and 84%, respectively. Figure 10b shows the
CPU time to reach 90% conflict reduction rate of HC with different initializations. On aver-
age, HC using convex onion peeling required 25.72% and 15.96% less CPU time to obtain
90% cost reduction compared to HC using default and random positions, respectively. The
results also show that the larger the dataset is, the greater the advantage in using convex
onion peeling over the other methods.

Figure 10c and d show the average final conflict costs and the CPU time of SA using
the three initializations. SA using convex onion peeling resulted in 39.31% less conflict cost
than SA using default position and 27.71% less final cost than SA using random position on
average. The CPU time required for termination was also compared. When the number of
sites was 120, the required CPU time was 25, 23, and 19 seconds for default, random and
convex onion peeling, respectively. The results show that SA with convex onion peeling
required 13.51% and 11.03% less CPU time than SA with default and random initializations.
Similar qualitative and quantitative trends were observed in the results of GA using these
three initializations. In Figure 10e and f, the average final conflict costs and CPU times
of GA with different initializations were plotted. Figure 10f shows that GA with convex
onion peeling required 28.20% and 19.70% less CPU time than GA with default and random
initializations, respectively.
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Figure 9: Map initialization

Real data Initialization Initial cost HC SA GA
Method Cost CPU Final cost Final cost

Dataset 1 default 47 0 (100%) 4212 2.5(95%) 0 (100%)
random 43 0 (100%) 2371 2 (95%) 1 (98%)
onion peeling 30 0 (100%) 2121 1 (97%) 0.5 (98%)

Dataset 2 default 171 39 (77%) 15226 25 (85%) 21 (88%)
random 157 33 (79%) 13195 21.5 (86%) 20 (87%)
onion peeling 135 26 (81%) 12574 20 (85%) 17 (87%)

Dataset 3 default 486 231 (52%) 95005 131 (73%) 125 (74%)
random 402 201 (50%) 72431 128 (68%) 116 71%)
onion peeling 346 153 (56%) 60710 121 (65%) 109 (68%)

Table 3: Real data result of HC, SA, and GA: numbers in ( ) are reduction rate

Table 3 shows the comparisons of the three initialization methods using the real
datasets. For HC, we show the cost after 30 seconds and the CPU time to achieve a 80%
conflict reduction rate using the three initialization. For SA and GA, the final costs and
CPU time are reported. Overall, the results of the real datasets are similar to those of the
synthetic datasets despite the skewed distribution of the real datasets.

All the results show that better map initialization can improve the performance of map
labeling algorithms. The results illustrate that the performance improvement with GA us-
ing convex onion peeling was the best among the three algorithms. This motivated us to
implement COPGAnot only in the initialization step, but also in the evolutionary process.
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(b) HC: CPU time for 90% reduction
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(c) SA: final costs for termination
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(e) GA: final costs for termination
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Figure 10: Synthetic data results of HC, SA, and GA
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5.3 Results of the evolutionary process

The results of the three different initialization methods in the previous section showed that
onion peeling initialization method performed better than the two other methods. In this
section, we present the result of COPGA , our proposed algorithm, compared to GA pro-
posed in [18]. The implementation characteristics of these two algorithms are listed in Table
2. COPGA used convex onion peeling initialization and GA used random initialization.
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Figure 11: Cost comparison of COPGAand GAwith synthetic datasets, weight a3 = 0.1

In Figure 11, we plotted the average final conflict costs of the algorithms along with
their initial costs. The average initial cost of COPGA was 15.56% less than that of GA. For
the maps with a number of sites between 40 and 80, both COPGA and GA resulted in no
conflicts in the final solutions. However, COPGA outperformed GA for the maps with the
sizes of sites between 90 and 160, resulting in 61.29% less conflict costs on average.

Figure 12a shows the CPU time required for termination. The performance improve-
ment of COPGA over GA was between 52.67% and 93.85%. On average, COPGA required
64.77% less CPU time than GA. In addition, the number of evolutions of COPGA to termi-
nate was 50.38% less than that of GA on average as shown in Figure 12b. Up to a certain
number of labels (map label density), the differences between COPGA and GA were min-
imal because both could solve the conflicts while having preferred positions. The results
clearly showed that COPGA outperformed GA in terms of CPU time and number of evolu-
tions required. However, if the density increases, then the problem becomes harder as both
algorithms required many more evolutions to resolve the conflicts.

Table 4 illustrates the performance of COPGA and GA using the real datasets. The initial
conflict costs, final costs, and the reduction rates are presented. We also show the number
of evolutions of COPGA and GA for termination. COPGA resulted in 20.00% less cost for
the map with 116 sites and 21.55% less cost for the map with 161 sites. The numbers of
evolutions for the termination of COPGA were 47.76%, 55.00% and 68.16% less than those
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of GA for datasets 1, 2, 3, respectively. The results show that the larger the dataset is, the
better the performance of COPGA over GA is.
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Figure 12: Comparison of COPGAand GAwith synthetic datasets

Real data COPGA GA
Initial cost Result # Evol. Initial cost Result # Evol.

(reduction) (reduction)
Dataset 1 30 0 (100%) 22 43 1 (98%) 42
Dataset 2 135 16 (88%) 243 157 20 (87%) 540
Dataset 3 346 91 (74%) 312 402 116 (71%) 980

Table 4: Comparisons of COPGAand GA: cost, CPU time, and number of evolutions with
real datasets

5.4 COPGA implementation on OpenMap

To illustrate the overall quality of map labeling generated by COPGA we implemented
COPGA on top of a real map application called OpenMap [5]. The latest version of OpenMap
(OpenMap 4.6.5 released in 2009) was used in our experiments.

OpenMap is a Java Beans based toolkit for building applications and applets that re-
quire geographic information. Using OpenMap components, developers can access data
from legacy applications, in-place, in a distributed setting. At its core, OpenMap is a set of
Java Swing components that understand geographic coordinates. These components help
users show map data, and handle user input events to manipulate that data. OpenMap
provides the means for users to see and manipulate geospatial information. It has been
used in many applications, e.g., marine navigation software, transport modeling software,
and integration map service for environmental studies.

OpenMap includes an implementation of map labeling of point features which is called
the “decluttering” algorithm [5]. The following is the summary of this algorithm: Open-
Map has an option to declutter labels; if the decluttering option is not chosen, then the
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labels are placed in their default position (position 2, Θ = 45 in Figure 3b). Open Map
decluttering method works by constructing a bit map of pixels that reflects the current pro-
jection extents (screen size of map) and all bits are initialized to empty. Decluttering occurs
during the preparation of label objects. The label bounds (length, width that is computed
based on the label, font, etc.) are used to find an empty region on the pixel map that is
within the specified distance from the site. The search is done in a predefined order around
the site, increasing the distance; if a location is found, then that part of the bits in the matrix
is marked as taken. If there is no non-overlapping location, then the label is dropped (re-
moved) from the map. The labels are chosen to be placed on the map in the same order as
they are read from the data source. Therefore, high priority labels must appear before the
low priority labels to ensure that they appear on the screen. In the decluttering algorithm
of OpenMap, the conflict computation ignores the conflicts of labels with the sites; also
the proximity of the labels to other sites is ignored. The OpenMap deconflicting algorithm
considers 9 positions including the possibility of placing the label centered at the site. Our
algorithm specifically avoids this position. In addition, the OpenMap deconflicting algo-
rithm does not consider label to site conflicts.

We evaluated COPGA using real datasets of city names for two different regions. Ta-
ble 5 shows the properties of our two real datasets, projection center (longitude, latitude),
the size of the region in X , the size of the region in Y , the total number of cities (sites),
and the final costs of the COPGA algorithm. Figure 13a and b illustrated the results of the
COPGA algorithm using OpenMap. The final result of COPGA on the two real datasets were
zero conflicts for the dataset 4 and five conflicts for the dataset 5.

Real data Projection center Boundary size Scale # Sites Resulting
(latitude, longitude) X Y conflicts

Dataset 4 (-98.42, 34.15) 727 503 32000000 66 0
Dataset 5 (59.51, 43.00) 727 503 40000000 117 5

Table 5: Results of COPGA using OpenMap with real datasets

6 Conclusions

Map labeling of point features is proven to be of interest in many applications. Due to the
difficulty of the problem, different heuristic solutions have been proposed in the literature.
We proposed a new solution, the convex onion peeling genetic algorithm (COPGA) that
utilizes the convex onion peeling structure in population initialization and the evolution
processes of a genetic algorithm. Experimental results using hill climbing [18], simulated
annealing [10], a genetic algorithm (GA) [18] and COPGA on the synthetic and real datasets
showed that the convex onion peeling initialization results in less conflicts compared to the
random and the preferred-position initializations regardless of the algorithm used. Com-
pared to a previously proposed genetic algorithm, COPGA clearly outperformed the other
algorithm with respect to the running CPU time and the number of evolutions to reach a
terminal condition with reduced conflicts in all cases. We implemented COPGA as well as
the other map labeling algorithms using OpenMap and demonstrated the output of run-
ning COPGA on real datasets.
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(a) Result of labeling real dataset 4 (66 sites)

(b) Result of labeling real dataset 5 (117 sites)

Figure 13: Visualization of COPGA results using OpenMap
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For future work, we plan to investigate the effect of clustering labels. A natural ex-
tension to convex onion peeling is to perform a density-based spatial clustering algorithm
on the sites, and then apply onion peeling on the created clusters independently. This
approach could improve map labeling quality regarding cartographic aspects. Also, we
will study the effect of applying the inversion operator at the initialization step. From the
results of the real datasets in Figure 13, we observed that some labels were not placed at
the preferred positions although no conflict was detected. We could apply an heuristic ad-
justment step at the end of evolutionary process of COPGA, which encourages upper-right
positions of labels (label positions in the first quadrant).
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